High-Photocatalytic Performance of TiO₂, TiO₂-SnO₂ Thin Film from its Precursor Solution by New Sol-gel Method

Hiroyuki KAWAHARA^{a*},Seichi RENGAKUJI^a, Yuuko NAKAMURA^b, and Teruhisa KOMURA⁶

^a Department of System Engineering of Materials & Life Science, Faculty of Engineering, Toyama University ^bCenter for Instrumental Analysis, Toyama University ^cDepartment of Chemistry and Chemical Engineering, Faculty of Engineering, Kanazawa University, ^{*a,b*}3190 Gofuku, Toyama 930-8555, Japan,

^c40 Kodatsuno 2-Chome, Kanazawa,920-8667,Japan

INTRODUCTION:

Recently, we reported the preparation of TiO₂ precursor solution and its thin film by a new solution method. which is different from the conventional sol-gel method²). This process is based on the hydrolysis and polymerization of metal alkoxide in hydrophilic and hydrophobic mixed solvents such as butanol and toluene This method was named the advanced sol-gel method, ASG, and has the advantage of having a crystallization temperature of 360° C, which is somewhat lower than that of the conventional sol-gel method ²⁾.

The aim of this study is to analyze the photocatalytic improvement by addition of TiO_2 film to SnO_2 . And the film's structure, transparency, etc. are also studied.

EXPERIMENTAL:

Titanium tetra n-butoxide (monomer) was used as the starting material. The titanium alkoxide was dissolved in a mixed solvent of butanol and toluene. After the addition of a small amount of H₂O dissolved in butanol, the mixed solution was refluxed, concentrated and diluted with solvent. Tin oxide precursor solution was prepared in the same manner. The thin films were prepared on quartz or glass substrates by spin-coating. The light transmission and/or absorption spectra were measured. Characterization of films was determined by TG-DTA, Xray diffraction analysis, atomic force microscopy, and UV-vis measurement. Also, the photocatalytic activity of TiO₂ and TiO₂-SnO₂ thin film prepared by this method is investigated with carbon decomposition reaction. **RESULTS:**

TiO₂ films having anatase structure (Fig.1-b), mixing of anatase and rutile one (Fig.1-b) and rutile structure (Fig.1c) showed good transparency. SnO_2 and TiO_2 - SnO_2 films (in Fig.2) mixing the precursor solution of TiO₂ and SnO₂, various binary oxide films are easily made. In Fig.3, Xray patterns of several composition films after being annealed at 500°C are shown. SnO₂ and TiO₂ films showed rutile and anatase structures, respectively. By mixing two components and annealing at the same temperature, rutile type structures appeared, though rutile structures of TiO₂ usually appeared at about 700°C. The absorption edge is shifted to a longer wavelength by adding SnO_2 to TiO_2 (Fig.2). Photocatalytic ability measured by decomposition of India ink is shown in Fig.4. By adding SnO_2 to TiO_2 , photodecomposition of India ink under the irradiation of lamp is increased. This figure shows irradiation filtered to cut UV rays.

REFERENCES:

1)S. Rengakuji, Y. Hara, Y. Nakamura, C. Shimasaki, S. Ikeno, T. Kato, K. Kubota, *Electrchemistry*, **67** 243 (1999)

2)J. Livage, Mat. Res. Soc. Symp. Proc.,73 717(1986); D. Kundu and D. Ganguli, J. Mater. Sci. Lett., 5 293 (1986).

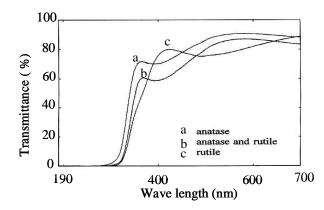
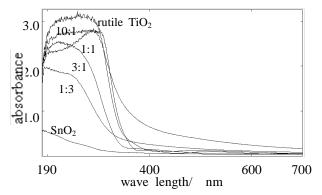
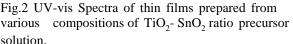




Fig.1. Transparency of the anatase, rutile and mixed TiO₂ thin films.

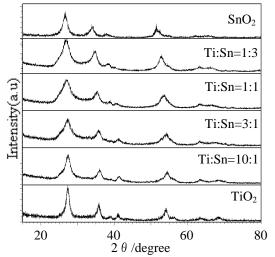
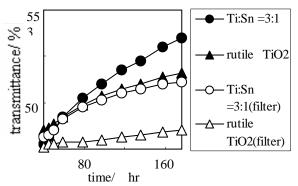
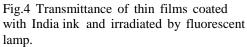




Fig.3 X-ray diffraction patterns of TiO₂-SnO₂ thin films prepared from each precursor solution.

