Pt ad-Atom Modified Au Electrode Prepared by Using Ionic Pairing of PtCl<sub>6</sub><sup>2-</sup> with Cationic SAM Hideaki Kusuda, Hiroyuki Hanazono, Katsuhiko Nishiyama, and Isao Taniguchi Department of Applied Chemistry and Biochemistry, Kumamoto University 2-39-1, Kurokami, Kumamoto 860-8555, Japan

## Introduction

Recently, ad-atom modified electrodes were studied extensively from both basic and applied aspects. Here we will report a new technique to prepare ad-atom modified electrodes by using ion-pair of cationic SAM with anionic metal complexes. This technique is schematically shown in Fig. 1. The prepared Pt/Au electrodes were used for catalytic oxidation of sugar and reduction of oxygen.

## Experimental

Gold disk and plate electrodes were used as working electrodes for cyclic voltammetry and XPS, respectively. Pt plate and Ag/AgCl electrodes were used as counter and reference electrodes, respectively. 4-pyridinethiol (4-PySH) was used as a modifier. Cyclic voltammetry was carried out using a BAS 50 W electrochemical analyzer.

## Results

Elements on the surface determined by XPS were summarized in Table 1. At step 2, the surface concentration of N was almost equal to that of S, indicating 4-PySH was immobilized on the Au surface. At step 3, the ratio of N to Pt was almost 2:1, which suggests that at the electrode surface two 4-PySH molecules form ionic pair with one  $PtCl_6^{2-}$  ion. Fig. 2a shows CVs of glucose oxidation in an alkaline solution. At a bare Au electrode, oxidation of glucose started around -0.5V. At the Pt/Au electrode the oxidation potential was shifted forward to negative direction by ca. 0.1 V, and the oxidation current became higher than at an Au electrode, showing on a Pt/Au electrode higher catalytic activity.

On the other hand, at a Pt/Au electrode, reduction of oxygen current was larger than that at an Au electrode, but smaller than at Pt electrode. We succeeded in prepare the Pt/Au having catalytic ability for oxidation of glucose and reduction of oxygen.



Fig.1. Schematic representation of new preparation method of Pt modified Au electrode

Table 1. XPS data for surface elements

| sample | Elements (%) |               |       |       |        |
|--------|--------------|---------------|-------|-------|--------|
|        | Au(4f)       | <b>Pt(4f)</b> | N(1s) | S(2p) | Cl(2p) |
| step2  | 78.04        | -             | 10.95 | 11.01 | -      |
| step3  | 77.66        | 1.83          | 7.25  | 7.41  | 5.85   |
| step4  | 64.95        | 3.9           | 15.35 | 8.37  | 7.43   |
| step5  | 81.09        | 2.98          | 6.83  | 4.68  | 4.42   |



Fig. 2(a) Oxidation of glucose(10mM) in 0.1M NaOH,and (b) Reduction of  $O_2$  in 0.1 M NaOH.(Pt/Au : \_\_\_\_\_\_\_; Au : - - - - - ; Pt : \_\_\_\_\_\_)