## Self-Humidifying Electrolyte Membrane for PEFC: Single Cell Tests with Low Humidity Reactant Gases

Hiroki Hagihara, Toshihiro Handa, Hiroyuki Uchida, Masahiro Watanabe\* Interdisciplinary Graduate School of Medicine and Engineering, \*Clean Energy Research Center, University of Yamanashi Takeda 4, Kofu, 400-8511 Japan

Polymer electrolyte membranes (PEMs) for fuel cells such as Nafion require water to maintain the proton conductivity. So far, water content in PEMs has been managed indirectly by humidifying either the fuel gas or the fuel and oxygen. The reduction of PEM thickness reduces such problems due to the water back-diffused from the cathode. However, this usually accelerates the crossover of  $H_2$  and  $O_2$  through the thin PEMs, which lowers the cell performance and the fuel utilization.

Attempting to overcome these problems, we have proposed new self-humidifying PEMs with highly dispersed nanometer-sized Pt and/or metal oxides for polymer electrolyte fuel cells (PEFCs).<sup>1</sup> The Pt particles were expected to suppress the crossover by the catalytic recombination of H<sub>2</sub> and O<sub>2</sub>, while the oxide particles (TiO<sub>2</sub> or SiO<sub>2</sub>) that have hygroscopic property were expected to adsorb the water produced at Pt particles together with that produced at the cathode reaction.

In this research, we measured a water absorbability and a proton conductivity of SiO<sub>2</sub>-dispersed PEMs and examined performances of PEFC with low humidity reactant gases.

SiO<sub>2</sub> nanoparticles were highly dispersed in a commercial Nafion112 membrane (thickness=50  $\mu$ m, denoted as normal-PEM) *via in-situ* sol-gel reaction. The preparation protocol was first proposed by Mauritz et al,<sup>2</sup> and modified by us to stabilize SiO<sub>2</sub> nanoparticles. Pt nanoparticles were highly dispersed in the SiO<sub>2</sub>-PEM by ion-exchange, followed by the reduction by using 1-pentanol as the reducing agent. A steady-state water absorbability  $\Delta W$  and a proton conductivity  $\sigma$  of the SiO<sub>2</sub>-PEM were measured simultaneously with magnetic balance and AC impedance analyzer in various humidity of 40 to 100 %RH at 60 and 80°C.

Two gas-diffusion electrodes (active area =  $25 \text{ cm}^2$ , 0.45 mg-Pt/cm<sup>2</sup>) attached to the PEM (Pt-SiO<sub>2</sub>-PEM, SiO<sub>2</sub>-PEM, or normal-PEM) were assembled into a JARI (Japan Automobile Research Institute) standard test cell. The cell was operated with H<sub>2</sub> and O<sub>2</sub> (or air) at a constant cell temperature T<sub>cell</sub> =  $80^{\circ}$ C under ambient pressure.

A controlled hydrolysis of (C<sub>2</sub>H<sub>5</sub>O)<sub>4</sub>Si in the PEM followed by vacuum-drying results in a transparent PEM with 1 to 10 wt% SiO<sub>2</sub>. Figure 1 shows effects of SiO<sub>2</sub> dispersion in PEM on  $\Delta W$  and  $\sigma$  at 40 %RH and 60°C. The  $\Delta W$  increased gradually with increasing amount of SiO<sub>2</sub>. Because all the  $\Delta W$  showed little hysteresis for the measurements on increasing or decreasing humidity, the PEMs were in the steady state equilibrated with the atmosphere. The  $\sigma$  in all the SiO2-PEM was found to be higher than the normal-PEM, and showed the maximum at 6 wt%. It is interesting that the  $\sigma$  showed very large hysteresis between increasing and decreasing humidity, in spite of little hysteresis in the  $\Delta W$ . The  $\Delta W$  increased 1.2 times by dispersing 6 wt% SiO<sub>2</sub> in the PEM, whereas the  $\sigma$  increased 4 times once SiO<sub>2</sub> adsorbed water. It was suggested that the hydrophilic cluster of the PEM was



Fig. 1 Effects of  $SiO_2$  dispersion in PEM on water absorbability and conductivity at 40 %RH and 60°C.



Fig. 2 Performances of PEFC with Pt-SiO<sub>2</sub>-PEM [Pt=0.09 mg/cm<sup>2</sup>, SiO<sub>2</sub>=1.0 wt%], SiO<sub>2</sub>-PEM [8.0 wt%] and normal-PEM.  $T_{cell}$  = 80°C, both the reactant gases were humidified at 30°C. Gas utilization: H<sub>2</sub>=70%, O<sub>2</sub>=40%.

modified to increase the  $\sigma$  after SiO<sub>2</sub> adsorbs water.

I - V curves and ohmic resistances of Pt-SiO<sub>2</sub>-PEM, SiO<sub>2</sub>-PEM and normal-PEM cells with low humidity H<sub>2</sub> and O<sub>2</sub> under steady-state operation are shown in Fig. 2. Both reactant gases were humidified at 30°C. The normal-PEM cell showed a poor output performance due to the high ohmic resistance. It was observed that the performance was improved greatly by loading only SiO<sub>2</sub> in PEM. The performance of the Pt-SiO<sub>2</sub>-PEM cell under the low humidification was as high as the normal-PEM cell fully humidified, because the ohmic resistance of the PEM under the operation was as low as that of normal-PEM fully humidified. This can be attributed to the high water absorbability of SiO<sub>2</sub>-dispersed PEM, because back-diffused water from the cathode as well as water generated at the Pt catalysts adsorb on hygroscopic SiO<sub>2</sub>.

This work was partially supported by the Grand-in-Aid "Research and Development of Polymer Electrolyte Fuel Cell" by NEDO.

1) M. Watanabe, H. Uchida, *et al.*, *J. Electrochem. Soc.*, **143**, 3847 (1996); *J. Electrochem. Soc.*, **145**, 1137 (1998); *J. Phys. Chem.* B, **102**, 3129 (1998); *J. Electrochem. Soc.*, **150**, A57(2003).

2) K. A. Mauritz, I. D. Stefanithis, at al., *J. Appl. Polymer Sci.*, **55**, 181 (1995).