Electrochemical Interaction of Nano-sized γ -Fe₂O₃ with lithium.

Sho Kanzaki¹, Taro Inada¹, Tadaaki Matsumura², Noriyuki Sonoyama¹, Atsuo Yamada¹, Mikio Takano³ and Ryoji Kanno¹

¹Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology 4259 Nagatsuta, Midori, Yokohama, 226-8502 Japan

> ²Department of Chemistry for Materials, Factory of Engineering, Mie University, 1515 Kamihama-cho, Tsu, 514-8507 Japan

³Institute for Chemical Research, Kyoto University, Gokasho, Uji, 611-0011 Japan

Iron oxides are one of the most ideal materials for lithium battery cathode because of its low cost and nontoxity for environment, and have been a continuous research subject. Recently, it is reported nano-sized α - Fe_2O_3 react with lithium reversibly without phase transformation¹. The structure of γ -Fe₂O₃ is categorized into the defect spinel in which a part of the octahedral sites is vacant, and provides larger path for lithium movement. With respect to this advantageous inherent crystallographic aspect, we have decided to explore the electrochemical properties of nano-sized γ -Fe₂O₃ as a lithium battery cathode. Technical interests of nanosized γ -Fe₂O₃ are (i) suppression of spinel-rocksalt transformation which have hindered the reversible redox reaction, (ii) maximizing the lithium reactivity by huge surface area, and (iii) kinetic improvement by the minimum distance for lithium to pass across the particle.

Iron oxide with nanosize morphology was synthesized by mild oxidation process of Fe(CO)₅ method by Hyeon et al². Organic impurity phase of ca. 40% was included in the as-obtained sample and was carefully removed by the heat treatment at 400°C in vacuum for 6 hours. The x-ray diffraction profile was analyzed using the space group P4₃32 and was identified to that of γ -Fe₂O₃. TEM observation indicates the particle diameter was typically 7 nm.

All electrochemical tests were performed at 25°C with a stainless steel cell (HS test cell, Hosen Co) with lithium metal anode and 1M LiPF6 / EC:DEC = 3:7 as electrolyte. The cathode mixture was set to γ -Fe₂O₃ : acetylene black : PVDF = 4:2:1. The discharge capacity of nano-sized $\gamma\text{-}Fe_2O_3$ measured at 56.5 μ A/cm³ was ca. 230 mAh/g. Corresponding to *ex-situ* XRD patterns measured during the discharge process (Fig. 3) showed significant suppression of the spinelrocksalt transformation as compared with the conventional large particle γ -Fe₂O₃, and the Mössbauer spectroscopy revealed that the valence state of Fe remained to be Fe(III)/Fe(II) = 45/55 after discharge (Fig. 2), it means 193 mAh/g as a capacity. This result indicates some residual current is consumed to form decomposed composite as SEI layer or lithium cluster on the particle surface. Details of the surface reaction will be discussed in the poster.

REFERENCES

[1] D. Larcher, C. Masqyelier, D. Bonnin, V. Masson, J,-B. Leriche, and J,-M. Tarascon, *J Electrochem. Soc.*, **150** A133 (2003)

[2] T. Hyeon, S. S. Lee, J. Park, Y. Chung, and H. B. Ma, *J. Am. Chem. Soc.*, **123**, 12798 (2001)

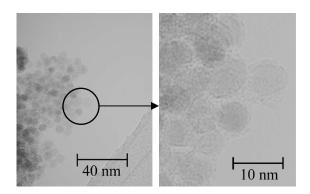


Fig. 1 TEM image of γ -Fe₂O₃ nanoparticle after heat treatment at 400°C in vacuum.

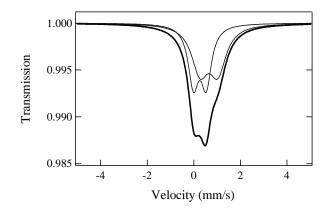


Fig. 2 Mössbauer spectrum of γ -Fe₂O₃, underwent Li intercalation by the discharge process at 100 μ A with the cut-off voltage of 1.0 V

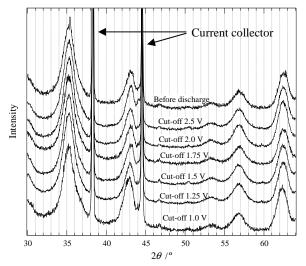


Fig. 3 X-ray diffraction patterns of γ -Fe₂O₃ with the different discharge stage.