Hydrogen Assisted Dechlorination of 1,2-dichloroethane over PtCu/SiO₂ and PtCu/SiO₂/Si Catalysts: Influence of PtCu and PtSi Alloy Formation on Selectivity

Dmitry V. Kazachkin^{*}, Armando Borgna^{**}, J.W. Niemantsverdriet^{**}, Vladimir I. Kovalchuk^{*}, Julie d'Itri^{*} ^{*}Chemical and Petroleum Engineering Department, University of Pittsburgh, PA 15261 ^{**}Schuit Institute of Catalysis, TU/e, Eindhoven, The Netherlands

Reaction of hydrogen assisted dechlorination (HDCl) 1,2-dichloroethane (1,2-DCE) over conventional PtCu/SiO₂ and model PtCu/SiO₂/Si catalysts prepared by spin-coating method [1] was studied by the set of physical surface and kinetic characterization techniques. The objective of this reaction is conversion of environmentally harmful 1,2-DCE into olefins, C_2H_4 , with high selectivity.

PtCu/SiO₂ catalysts have showed a performance which is in an agreement with published data [2]: Pt/SiO₂ was unselective towards C_2H_4 , in turn, all bimetallic catalyst showed non-zero selectivity towards C_2H_4 . In general, there was correlation of selectivity with Cu/Pt ratio: the higher was the ratio the higher was selectivity towards ethylene. Variation of reduction temperature (220 or 500 °C) during the pretreatment conditions was performed in order to control the degree of alloying between Pt and Cu. Selectivity response was inversely proportional to reduction temperature: increase of reduction temperature cause the decrease of selectivity towards C_2H_4 . FTIR study of CO as a test molecule was implemented to address the influence of electronic ("ligand") and ensemble size effects upon alloying on selectivity of HDCl of 1,2-DCE reaction. It was found out that ensemble size effect is the prime factor which defines high selectivity.

Model PtCu/SiO₂/Si catalysts with metal loading close to 6 at nm⁻² showed very interesting behavior in comparison with conventional PtCu/SiO₂ catalysts. First, Pt/SiO₂/Si reduced at 220 °C showed non-zero (~35%) conversion towards $C_2H_4(!)$, which was ascribed to partial HDCl of 1,2-DCE over Si. High dispersion of Pt can also impede to the passing of C_2H_4 hydrogenation reaction. Second, increase of pretreatment reduction temperature up to 500 °C with the objective to decrease the dispersion of Pt led to very interesting result: selectivity towards C_2H_4 increased up to 70%. This behavior was ascribed to formation of Pt-Si alloy. And finally, increase of Cu content resulted in increase of selectivity. In turn, increase of reduction temperature led to 100% selectivity for PtCu/SiO₂/Si catalyst with Cu/Pt ratio 1.

Mechanism of Pt-Cu and Pt-Si alloys formation, and influence of ensemble size effect on selectivity performance 1,2-DCE HDCl reaction will be discussed.

References:

^{1.} van Hardeveld, R.M., et al., *Deposition of inorganic salts from solution on flat substrates by spin-coating: theory, quantification and application to model catalysts.* Applied Surface Science, 1995. **84**(4): p. 339-46.

^{2.} Vadlamannati, L.S., V.I. Kovalchuk, and J.L. d'Itrie, *Dechlorination of 1,2-dichloroethane catalyzed by Pt-Cu/C: unraveling the role of each metal.* Catalysis Letters, 1999. **58**(4): p. 173-178.