Effects of NH₃ Pre-deposition Anneal on ALD High-k Gate Stacks

Naim Moumen^a, Jeff J. Peterson, Joel Barnett, Byoung Hun Lee^a, Jong Hoan Sim, Robert. W. Murto^b, Gennadi Bersuker and Howard. R Huff

> International SEMATECH 2706 Montopolis Drive Austin, TX 78741-6499 ^aAssignee from IBM ^bAssignee from Texas Instruments

The ITRS roadmap calls for implementation of high-k gate dielectric materials starting with the 65nm technology generation. This requires high quality interfaces between the high-k dielectric and Si substrate in the channel region. We have investigated the effect of various surface preparation treatments prior to high-k film deposition on transistor performance. Surface preparation treatments affect the growth of the high-k film and the final EOT.

This work discusses the effect of NH3 anneals and process conditions on high-k transistor performance such as gate leakage, Vt and electron mobility [1]. Transistors were fabricated on 200 mm p-type epi <100> Si substrate using a conventional silicon gate transistor process flow with thin high-k dielectrics deposited by the atomic layer deposition (ALD). The ALD-HfO₂ film exhibits an incubation period and island type growth on HF-last surfaces [2], and the resulting films exhibit high gate leakage current or non-working devices. The addition of an NH₃ pretreatment is shown to affect the properties of the interfacial layer at the silicon/high-k interface, which is critical for controlling the final EOT. An NH₃ anneal pretreatment, i.e., an NH₃ predeposition anneal (PreDA), after an HF-last clean led to ~5Å bottom interfacial layer after high-k deposition which is about 50% thinner than what was observed with the ALD films grown on the chemical oxides interfaces, without the NH₃ PreDA. Lower EOT and lower leakage current also are obtained when an NH₃ PreDA follows the HF-last for ALD HfO₂ films. These surface preparation processes result in an EOT reduction of 4Å to 5Å versus chemical oxides, providing a potential solution to achieving a sub-1nm EOT. NH₃ anneal temperatures ranging from 500°C to 900°C have been studied to correlate the effect of N concentration in the bottom interface on the transistor properties.

Figure 1 shows the nitrogen concentration obtained by SIMS analysis. The nitrogen concentration increase in a steady manner between 600°C and 900°C, while a rapid increase is observed between 500°C and 600°C. Figure 2 shows the drive current density versus EOT for different

transistors fabricated using different NH_3 temperature anneal and a series of ALD- HfO_2 film thickness (20Å, 25Å and 30Å. The data show an increase in drive current by using lower NH_3 anneal temperatures or lower N concentration at the silicon/high-k interface.

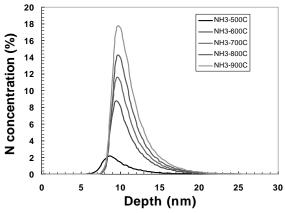


Figure 1: SIMS nitrogen concentration profile after NH₃ anneal at different temperatures

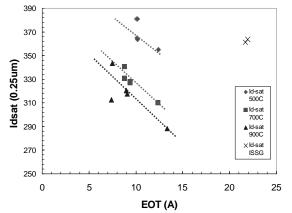


Figure 2: Drive current versus different NH_3 pre deposition anneal conditions obtained for the 30Å, 25Å, and 20Å ALD-HfO₂ with TiN electrode stack deposited on the HF-last/NH3 interface

REFERENCES

- Naim Moumen, *et al*, Physics and Technology of High-K Gate Dielectrics - II, Eds. S. Kar, R. Singh, D. Misra, H. Iwai, M. Houssa, J. Morais, and D. Landheer, **PV 2003-22**, The Electrochemical Society Proceedings Series, Pennington, NJ (2003), p. 59.
- [2] M. Copel, M. Gribelyuk and E. Gusev, Appl. Phys. Letts., **76**, 436, 2000.