Effect of Foreign Metal Ions Doping on The Structural

and Electrochemical Properties of LiNi_{0.5}Mn_{0.5}O₂ Decheng Li^a, Masaki Yoshio^b, ,Hideyuki Noguchi^b* and Yuichi Sato^c

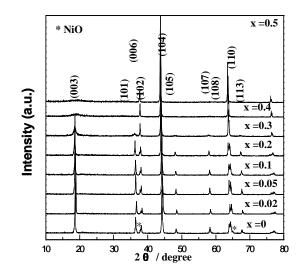
^aHigh-Tech Research Center, Kanagawa University, 3-27-1 Rokkakubashi, Yokohama 221-8686, Japan
^bDepartment of Applied Chemistry, Saga University, Hohjyo-1, Saga 840-8502, Japan
^cDepartment of Applied Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Yokohama 221-8686, Japan

LiNi_{0.5}Mn_{0.5}O₂ is of great interest as a cathode material for lithium rechargeable batteries due to its good battery performance [1]. However, it has some drawbacks such as the difficulty in preparation and poor rate capability [2, 3]. Although foreign metal ions doping is a well-published method to improve the structural and electrochemical properties of cathode materials, the influence of foreign metal ions doping on the structural and electrochemical characters of $\text{LiNi}_{0.5}\text{Mn}_{0.5}\text{O}_2$ is not very clear [4,5]. In this work, $\text{LiNi}_{0.5}\text{Mn}_{0.5-x}\text{Ti}_x\text{O}_2$ and $\text{LiNi}_{0.5-x}\text{Mn}_{0.5-x}\text{Co}_{2x}\text{O}_2$ were prepared and their structural and electrochemical properties were characterized.

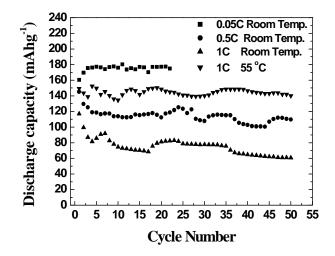
Compounds were prepared by spray dry method. The charge/discharge tests were carried out using the CR2032 coin-type cell using lithium metal as anode. The cathode contains a mixture of 20 mg of accurately weighted active materials and 13 mg of the teflonized acetylene black (TAB-2) as conducting binder. The electrolyte is 1 M LiPF₆ in ethylene carbonate / dimethyl carbonate (EC/ DMC, 1:2 by volume).

Fig.1 shows the XRD patterns of LiNi_{0.5}Mn_{0.5-x}Ti_xO₂ ($0 \le x \le 0.5$).Ti doping reduces the formation of the impurity (NiO) and promotes the formation of Li-Ni-Mn-Ti-O system. High Ti content (x > 0.3) makes the cation mixing severe and results in a phase transition from layered to rock-salt structure. An appropriate amount of Ti doping (0.05 < x < 0.2) in LiNi_{0.5}Mn_{0.5-x}Ti_xO₂ can slightly increase the capacity.

Cobalt doping into $\text{LiNi}_{0.5}\text{Mn}_{0.5}\text{O}_2$ is helpful to the formation of the layered structure and alleviated the degree of the cation mixing. The cobalt doping in $\text{LiNi}_{0.5}\text{Mn}_{0.5}\text{O}_2$ can not only reduce the cell polarization, but also increase the reversible capacity. Moreover, cobalt doping also improves the rate capability of $\text{LiNi}_{0.5}\text{Mn}_{0.5}\text{O}_2$. Fig.2 shows the cyclic performance of


 $LiNi_{0.425}Mn_{0.425}Co_{0.15}O_2$ operated at different conditions. In general, the structural and electrochemical properties of $LiNi_{0.5}Mn_{0.5}O_2$ are prone to be affected by foreign metal ions doping. Co substitution in

 $LiNi_{0.5}Mn_{0.5}O_2$ can greatly upgrade the battery


performance of LiNi_{0.5}Mn_{0.5}O₂.

References

- [1]. T. Ohzuku, and Y. Makimura. Chem. Lett., 2001, 744.
- [2] M. Yoshio, Y. Todorov, K. Yamato, H. Noguchi, J. Itoh, M. Okada, and T. Mouri, *J. power sources.*, 74 (1998) 46.
- [3] B. L. Cushing, and J. B. Goodenough, *Solid State Sciences*, 4 (2002) 1487.
- [4]. D. D. MacNeil, Z. Lu, J. R. Dahn, J. Electrochem. Soc., 149 (2002) A1332.
- [5] S. -H. Kang, J. Kim, M. E. Stoll, D. Abraham, Y. K. Sun, and K. Amine, J. Power Sources, 112 (2002) 41.

Fig.1. XRD patterns of $\text{LiNi}_{0.5}\text{Mn}_{0.5-x}\text{Ti}_x\text{O}_2$ ($0 \le x \le 0.5$)

Fig. 2. Cyclic performance of LiNi_{0.425}Mn_{0.425}Co_{0.15}O₂ operated at different conditions.