Electrochemical properties of $LiCo_{1/3}Ni_{1/3}Mn_{1/3}O_2$ as a Cathode for Lithium Ion Batteries

Yao Chen*, G.X. Wang, K. Konstantinov and H.K. Liu

Institute for Superconducting & Electronic Materials, University of Wollongong, NSW 2522, Australia

LiCoO₂ compound as a cathode material has been used in commercial lithium ion battery production. However, due to the high costs and toxicity of LiCoO₂, many efforts have been made to replace LiCoO₂. LiNiO₂ is an attractive material because of its low cost and its possibility of a high charge/discharge capacity. However, LiNiO₂ compounds have two major drawbacks such as difficulty in preparation and poor cyclability. LiCo_xNi_yMn_{1-x-y}O₂ are very promising positive electrode materials. They provide a compromise between the good cyclability, reproducibility, and thermal stability of LiCoO₂ and the high capacity and the low prize of LiNiO₂ [1-3].

this work, the $LiCo_{1/3}Ni_{1/3}Mn_{1/3}O_2$ In were synthesized by sol-gel method using 2-ethylhexanoic acid as chelating agent, 2-methoxyethanol as solvent, and lithium acetate, cobalt acetate, nickel acetate, manganese acetate as other raw materials. The X-ray diffraction (XRD) pattern indicated that LiCo1/3Ni1/3Mn1/3O2 was pure phase. The SEM micrograph shows the particle size of synthesized $LiCo_{1/3}Ni_{1/3}Mn_{1/3}O_2$ morphology (Fig.1). The electrochemical properties of these materials such as galvanostatic charge/discharge, cyclic voltammetry and a.c.impedance spectroscopy were systematically measured. The cathode materials show high reversible specific capacity and long cycling life (Fig.2).

Acknowledgement

Founding from Australian Research Council supports this work.

References

 Zhonghua Lu and J.R. Dahn, J. Electrochem. Soc., A237-A240 (2001) 148
J.H. Kim, C.S. Yoon, and Y.K. Sun, J. Electrochem. Soc., A538-A542 (2003) 150
T.Ohzuku and Y.Makimura, Chemistry Letters, 642-643 (2001).

*Corresponding author. Fax: +61-2-4221-5731;

E-mail address: yao_chen@uow.edu.au

Figure 1. SEM micrographs of $LiCo_{1/3}Ni_{1/3}Mn_{1/3}O_2$

Figure 2. Discharge cycling performances using $LiCo_{1/3}Ni_{1/3}Mn_{1/3}O_2$ cathode.