Synthesis and Electrochemical Properties of $Li[Ni_{1/3}Co_{1/3}Mn_{1/3}]O_{2-x}F_x$ via Co-precipitation

G.-H. Kim^a, S.-T. Myung^b, M.-H. Kim^a, Y.- K. Sun^a, K. Amine^c and S.-H. Kang^c

^aDepartment of Chemical Engineering, Center for Information and Communication Materials, Hanyang University, Seoul 133-791, Republic of Korea

^bVK Corporation, 67 Jije-Dong, Pyongtaek-City, Kyonggi-Do 450-090, Republic of Korea

^cArgonne National Laboratory, Electrochemical Technology Program, Chemical Engineering Division, Argonne, Illinois 60439, USA

Introduction

Recently, the lithium transition-metal oxide $Li[Ni_{1/3}Co_{1/3}Mn_{1/3}]O_2$ has received a great attention as a cathode material for rechargeable Li-ion secondary batteries [1-3]. As reported by Ohzuku et al, has been reported that $Li[Ni_{1/3}Co_{1/3}Mn_{1/3}]O_2$ can deliver a capacity of about 150 mAhg⁻¹ in 3.5-4.2V or 200 mAhg⁻¹ in 3.5-5.0V[2]. Furthermore, $Li[Ni_{1/3}Co_{1/3}Mn_{1/3}]O_2$ provides the advantage over $LiCoO_2$ system of being cost effective and thermal stability.

However Li[Ni_{1/3}Co_{1/3}Mn_{1/3}]O₂ is known to have unstable cycling performance and their capacity fades especially when cycled to higher voltage (~ 4.5, 4.6V) and at high temperature (55 °C). The problem of capacity fading observed upon long-term cycling must be overcome, because such demerits may hinder this material to be used as a cathode material for battery applications.

Anion substitution appeared to be a good approach to modify the structural and electrochemical properties in spinel LiMn₂O₄ system, as reported by Sun et al. [4]. We have tried to improve the electrochemical properties of Li[Ni_{1/3}Co_{1/3}Mn_{1/3}]O₂ by doping the oxygen with Fluorine. Here, we would like to report the results of Li[Ni_{1/3}Co_{1/3}Mn_{1/3}]O_{2-x}F_x.

Experimental

 $Li[Ni_{1/3}Co_{1/3}Mn_{1/3}]O_{2-x}F_x$ was prepared by heating a reaction mixture of the dehydrated [Ni_{1/3}Co_{1/3}Mn_{1/3}](OH)_z and LiOH·H₂O and LiF at 1000 $^{\circ}\text{C}$ for 10 hours. The prepared powders were examined by XRD, SEM, AAS, and ion chromatography. For electrochemical investigation, the prepared $Li[Ni_{1/3}Co_{1/3}Mn_{1/3}]O_{2-x}F_x$ was blended with Super S carbon black, and polyvinylidene fluoride (80:10:10) in N-methyl-2-pyrrolidone. The cell was assembled in an argon-filled dry box and tested at a current density of 20 mA g⁻¹ at 30 °C. For differential scanning calorimetry experiments the coin cells were charged to 4.6 V at 20 mA g⁻¹. The samples were analyzed in the DSC using a temperature scan rate of 2 °C \min^{-1} .

Results and discussion

Figure 1 shows X-ray diffraction (XRD) patterns of Li[Ni_{1/3}Co_{1/3}Mn_{1/3}]O_{2-x} F_x with x=0, 0.05, 0.1, 0.15, 0.2, and 0.5 which were synthesized at 1000 °C. All of the peaks can be indexed based on a hexagonal α -NaFeO₂ structure (space group: R-3*m*). The Li atoms occupy 3a sites, the Ni, Co, and Mn atoms are randomly placed on 3b sites, and oxygen atoms are on 6c sites. For Li[Ni_{1/3}Co_{1/3}Mn_{1/3}]O_{2-x} F_x (x=0.2, 0.5), the diffraction

intensity of the (003) peak was analogous to that of the (104) peak. And, the reflection of (018) and (110) for $Li[Ni_{1/3}Co_{1/3}Mn_{1/3}]O_{2-x}F_x$ are still distinguishable in the all compositions.

Figure 2 shows the voltage versus capacity of Li/Li[Ni_{1/3}Co_{1/3}Mn_{1/3}]O_{2-x}F_x cells with x=0, 0.05 between 2.8 and 4.6V. Initially, a higher capacity over 180 mAh/g are obtained for Li[Ni_{1/3}Co_{1/3}Mn_{1/3}]O₂. However, a rapid capacity fade is seen during cycling, from 184 mAh/g to 166 mAh/g. By F doping, it seems that though the initial capacity decreased some extend, the lithium de/intercalation process is highly reversible with small polarization in Fig. 2. Details of the structure and electrochemistry of the current materials will be intensively discussed on the meeting.

Acknowledgements

This research was supported by University IT Research Center project.

References

- [1] J. R. Dahn et al., *Electrochem. Solid State Lett.*, 4, A220 (2001).
- [2] T. Ohzuku et al., Chem. Lett., 2001, 744.
- [3] T. Ohzuku et al., *J.Power Source.*, **119**, 171 (2003).
 [4] Y.-K. Sun et al., *J. Electrochem. Soc.*, **147**, 2116
- (2000).

Figure 1. XRD patterns of $Li[Ni_{1/3}Co_{1/3}Mn_{1/3}]O_{2-x}F_x$ (x=0, 0.05, 0.1, 0.15, 0.2, and 0.5) synthesized at 1000°C.

Figure 2. Continuous charge and discharge curves of $\text{Li/Li}[\text{Ni}_{1/3}\text{Co}_{1/3}\text{Mn}_{1/3}]\text{O}_{2-x}F_x$ cells operated at 20mA g⁻¹ cycled between 2.8 and 4.6V at 30°C.