Spin Coated Polymer Electrolyte for Solid State Thin Film Lithium Polymer Batteries

Cheol-ho Park, Min Park, Sang-Im Yoo, Seung-Ki Joo School of Materials Science and Engineering, Seoul National University San 56-1, Shillim-dong, Kwanak-gu, Seoul 151-742, Korea

Using spin coating method, we obtained solvent free solid (PEO)_nLiPF₆ (n=6~12) electrolyte thin film of $10{\sim}50\mu m$ thick. Ionic conductivities of spin coated electrolyte are $10^{\text{-}6}{\sim}10^{\text{-}8}\text{S/cm}$ at room temperature depending on film composition and thickness. With these electrolyte we fabricated all solid state thin film lithium polymer batteries which have total thickness of $12{\sim}50\mu m$. Charge-discharge performance of these batteries was investigated. These results indicated that spin coated polymer electrolyte, (PEO)_nLiPF₆ has comparable properties for a thin film lithium polymer battery.