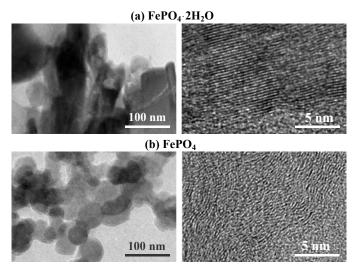
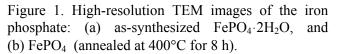
Nanoparticle Iron-Phosphate Anode with a New Crystal Structure for a Li-Ion Battery

Dongyeon Son,^a Eunjin Kim,^b Tae-Gon Kim,^a Jaephil Cho,^b and Byungwoo Park^{a,*}

^a School of Materials Science and Engineering, Seoul National University, Seoul, Korea


> ^b Department of Applied Chemistry, Kumoh National Institute of Technology, Gumi, Korea


Up to now, iron phosphates have been explored as cathode materials only.¹⁻³ Padhi *et al.* reported an olivine-type LiFePO₄ cathode, which has a theoretical capacity of 170 mAh/g. As lithium is intercalated/deintercalated from the octahedral sites, olivine-type LiFePO₄ has a flat voltage plateau at 3.4 V vs. Li. In addition, iron phosphates exhibited different types of structures depending on For instance, FePO₄ the synthesis conditions. showed a trigonal structure at normal pressure, but converted to orthorhombic structure at high pressure.⁴ More recently, Song et al.⁵ and Reale et al.⁶ reported monoclinic (with a space group $P2_1/n$), orthorhombic (with Pbca), or hexagonal (with $P6_3mc$) FePO₄. These iron phosphates exhibited an open-circuit voltage of approximately 4 V, and showed a voltage plateau at ~ 3 V (working as cathodes) with discharge capacities below 100 mAh/g.

We report here a new possibility of iron phosphates as anode materials for Li rechargeable batteries. Despite iron phosphates being briskly investigated as a positive electrode, the anode materials of FePO₄ have not been reported in the open literature yet. The capacity of synthesized nanoparticle iron phosphates is approximately 3 times higher than the ideal capacity of the LiFePO₄ cathode.

References

- 1. A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, J. Electrochem. Soc. 144, 1188 (1997).
- 2. S.-Y. Chung, J. T. Blocking, and Y.-M. Chiang, Nature Materials 1, 123 (2002).
- 3. J.-M. Tarascon, and M. Armand, Nature 414, 359 (2001).
- M. P. Pasternak, G. K. Rozenberg, and K. Brister, *Phys. Rev. Lett.* **79**, 4409 (1997).
 Y. Song, P. Y. Zavalij, M. Suzuki, and M. S.
- Whittingham, Inorg. Chem. 41, 5778 (2002).
- 6. P. Reale, B. Scrosati, C. Delacourt, C. Wurm, M. Morcrette, and C. Masquelier, Chem. Mater. 15, 5051 (2003).

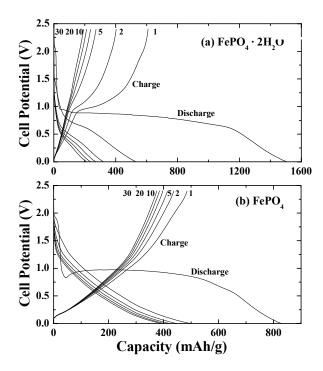


Figure 2. Voltage profiles of the iron phosphates between 2.4 and 0 V. The cells were cycled at (a) 61 mA/g for variscite $FePO_4 \cdot 2H_2O$ (initial capacity of 609 mAh/g), and (b) 49 mA/g for tridymite FePO₄ (initial capacity of 485 mAh/g).

* byungwoo@snu.ac.kr