High-Throughput Methods for the Investigation of Photoelectrochemical Hydrogen Production from $Zn_{1-x}Co_xO$ Thin Films

Thomas F. Jaramillo, Sung-Hyeon Baeck, Alan Kleiman-Shwarsctein, and Eric W. McFarland

Dept. of Chemical Engineering, University of California, Santa Barbara, CA 93106-5080

The solar driven photolysis of water has long been identified as one of the "holy grails" of chemistry because of its potential impact as a clean, renewable, method of fuel production. It is well known that the photoelectrochemical activity of ZnO is limited by two primary factors: (1) poor solar spectrum photon absorption (due to a wide bandgap of 3.2 eV), and (2) photocorrosion in electrolytes [1]. The combinatorial chemistry methodology of rapid synthesis and highthroughput characterization has expedited the discovery of improved of solid-state materials for a variety of We have applied both traditional and applications. improve the combinatorial methods to optoelectrochemical properties of hydrogen producing photocatalytic metal oxides. Previous researchers have identified cobalt-doping as a means to improve visible photon absorption in ZnO, however, only a handful of cobalt-loadings were prepared and studied [2-5]. Herein, we present results of a 120-member $Zn_{1-x}Co_xO$ (0 < x < 0.068) thin film library that spans 27 different cobalt concentrations with at least 4 replicates each, Fig. 1.

Zn_{1-x}Co_xO samples (200 nm thick) were electrochemically deposited using a rapid serial synthesis system, Fig. 2. Zn:Co stoichiometry in the film was controlled by ratios of $ZnCl_2$ and $Co(NO3)_2$ in the independent electrochemical deposition cells. This synthetic route followed the ZnO preparation proposed by Gal. et. al. [6]. XPS was used to determine Zn:Co stoichiometries of the doped films, and it was found that the cobalt was predominantly Co^{2+} . XRD confirmed the wurtzite structure for all samples. UV-Vis spectroscopy showed increase visible absorption of the cobalt-doped samples through two means: (1) characteristic d-d transitions from the Co²⁺ ion, and (2) decreased bandgap. high-throughput photoelectrochemical screening А system was developed to characterize the photocatalytic activity of the samples. Fig. 3 shows the zero-bias photocurrent of the samples in 0.2M KNO₃ (aq.). A ~ 1 W/cm² Xe lamp was used for illumination. Under UV-Vis illumination, the photocurrent of the samples asymptotically decreased with increasing cobalt. Under Vis-only illumination, however, photocurrent initially decreases but then rises rapidly to a maximum at Co = 4.4% with a value nearly four times greater than that of High-throughput photoelectrochemical pure ZnO. screening showed greatly increased photoactivity under applied bias, and it was confirmed by action spectra that the Co²⁺ photon absorptions and decreased bandgap of cobalt-doped films observed in UV-Vis spectroscopy gave rise to the increased photocurrent. Flat-band potential measurements indicated a negligible change in the conduction band edge for cobalt-doped samples compared to ZnO, implying that the bandgap shift must arise from an increase in valence band energy.

ACKNOWLEDGEMENTS

Major funding was provided by the Hydrogen Program of

the Department of Energy (Grant # DER-FC36-01G011092). Partial support was provided by the MRSEC Program of the National Science Foundation under Award No. DMR00-80034

REFERENCES

- 1. Inoue, T. et. al., Bulletin of the Chemical Society of Japan 52, 3217 (1979).
- 2. Fichou, D. et. al., Journal of Electroanalytical Chemistry, **188**, 167 (1985).
- Jakani, M. et. al., Journal of Solid State Chemistry, 56, 269 (1985).
- 4. Bahadur, L. and Rao, T.N., Solar Energy Materials and Solar Cells, **27**, 347 (1992).
- 5. Hirano, T. and Kozuka, H., Journal of Materials Science, **38**, 4203 (2003).
- 6. Gal, D. et. al., Thin Solid Films, **361**, 79 (2000).

Figure 1. Automated electrochemical synthesis of 120 samples using scanning counter and reference electrodes.

S	oluti Co (%	ion %)		16.3 cm			Film Co (%) by XPS		
0.0	0.0	0.0	11	0000	0000	0000	0.0	0.0	0.0
0.0	1.0	2.0	1	0000	0000	0000	0.0	0.06	0.1
2.9	4.8	8.3	1	0000	0000	0000	0.2	0.3	0.5
13.0	17.4	21.3	ε	0000	0000	0000	0.9	1.3	1.6
23.1	25.9	28.6	8	0000	0000	0000	1.8	2.1	2.4
31.0	33.3	35.5	13	0000	0000	0000	2.7	2.9	3.2
37.5	39.4	41.2	1	0000	0000	0000	3.4	3.7	3.9
42.9	44.4	46.0	1	0000	0000	0000	4.2	4.4	4.6
47.4	50.0	52.9		0000	0000	0000	4.8	5.2	5.6
55.6	57.9	60.0		0000	0000	0000	6.1	6.4	6.8

Figure 2. Library design for 120 $Zn_{1-x}Co_xO$ films ranging from 0 < x < 0.068.

Figure 3. Photocurrent results in 0.2M KNO₃. Left axis reflects full Xe lamp illumination while the right axis exhibits results with a UV cut-off filter in place.