Solid-State Redox Reaction of LiNi_{1/2}Mn_{1/2}O₂ for Advanced Lithium-Ion Batteries

Tsutomu Ohzuku and Yoshinari Makimura

Graduate School of Engineering, Osaka City University (OCU), Osaka 558-8585, Japan

In recent years, there has been increasing interest in lithium nickel manganese oxides with or without cobalt for advanced lithium-ion batteries [1-5]. In a previous paper [5], we have shown that $LiNi_{1/2}Mn_{1/2}O_2$ is a stable compound consisting of Ni^{2+} and Mn^{4+} , not a solid solution of $LiNiO_2$ and LiMnO₂, whereas LiCo_{1/2}Ni_{1/2}O₂ is a one-to-one solid solution of LiCoO₂ and LiNiO₂. Our main concern is electrochemistry of lithium insertion materials rather than crystal and electronic structures, which complement our understanding on lithium insertion materials. In this paper, we examine the solid-state redox reaction of LiNi1/2Mn1/2O2 by applying a concept of electrochemical density of states [6], and the results are compared with those of LiNiO2 and $LiCo_{1/2}Ni_{1/2}O_2.$

Figure 1 (b) shows the results on reversible potential measurements of Li_vNi_{1/2}Mn_{1/2}O₂. As shown in Fig. 1, the solid-state redox reaction of LiNi1/2Mn1/2O2 can be illustrated by decomposing the system into three parts at y = 1/3 and 2/3in $Li_yNi_{1/2}Mn_{1/2}O_2$, which are characterized by 4.49, 4.05, and, 3.81 V of redox levels. Negative interaction parameters of $z\phi_i/F$ mean repulsive interaction, i.e., one-phase reaction over an entire range.

Although nickel manganese dioxide $(\Box Ni_{1/2}Mn_{1/2}O_2)$ cannot be obtained due to the thermodynamic limitation, we can calculate the Gibbs free energy change for the overall reaction. The Gibbs free energy change is calculated to be $-396 \text{ kJ} \cdot \text{mol}^{-1}$ by integrating E(y) in the composition range of $0 \le y \le 1$, corresponding to the average voltage of 4.10 V. The average voltage of 4.10 V for $LiNi_{1/2}Mn_{1/2}O_2$ is higher than 3.90 V for LiNiO₂, which is almost the same as 4.08 V for LiCo_{1/2}Ni_{1/2}O₂ [6].

Figure 2 shows the levels of solid-state redox potentials for $LiNi_{1/2}Mn_{1/2}O_2$, $LiNiO_2$, and $LiCo_{1/2}Ni_{1/2}O_2$. The solidstate redox reaction for LiNiO₂ formally consists of Ni³⁺/Ni⁴ and that for LiNi_{1/2}Mn_{1/2}O₂ seemingly consists of Ni²⁺/Ni³⁺ and Ni^{3+}/Ni^{4+} . Difference in average voltage associated with redox reaction of nickel species for both samples is 0.3 V. When we compare average voltage of $LiCo_{1/2}Ni_{1/2}O_2$ with that of LiNi_{1/2}Mn_{1/2}O₂, both samples shows the same voltage in spite of different redox species.

From these results, we will discuss characteristic features on solid-state redox reactions of lithium insertion materials for advanced lithium-ion batteries.

References

- Ohzuku and Y. Makimura, Chem. Lett., 30, 744 1. T. (2001).
- Z. Lu, D. D. MacNeil, and J. R. Dahn, Electrochem. 2. Solid-State Lett., 4, A191 (2001). Y. Makimura and T. Ohzuku, J. Power Sources, 119-
- 3.
- 121, 156 (2003).
 B. J. Hwang, Y. W. Tsai, D. Carlier, and G. Ceder, *Chem. Mater.*, 15, 3676 (2003).
 Y. Koyama, Y. Makimura, I. Tanaka, H. Adachi, and T. 4.
- 5. Ohzuku, J. Electrochem. Soc., in press (2004). T. Ohzuku and A. Ueda, J. Electrochem. Soc., 144,
- 6. 2780 (1997).

Fig. 1 (a) The *E* versus (dx/dE) curves together with the *E* versus (dy/dE) curve for the solid-state redox reaction of (b) Comparison between the observed $LiNi_{1/2}Mn_{1/2}O_2$. reversible potentials (open circles) and calculated E(y)(solid line) curves. The *E* versus *y* curve is obtained by integrating (dy/dE) with respect to E from plus infinity to E.

Fig. 2 Levels of the solid-state redox potentials for LiNi_{1/2}Mn_{1/2}O₂, LiNiO₂, and LiCo_{1/2}Ni_{1/2}O₂.