$\label{eq:constraint} \begin{array}{c} Vibrational \ Spectroscopic \ Investigation \ of \ Li \\ Extraction \ from \ Monoclinic \ and \ Rhombohedral \\ Li_3V_2(PO_4)_3 \end{array}$

Christopher M. Burba and Roger Frech

Department of Chemistry and Biochemistry University of Oklahoma, Norman, OK

Introduction

The Li₃V₂(PO₄)₃ family of compounds has generated interest as new cathode materials because of their high theoretical capacity. Most investigations of this family have focused on the monoclinic (α -) and rhombohedral (β -) forms of Li₃V₂(PO₄)₃.^{1, 2} In β -Li₃V₂(PO₄)₃, two Li⁺ ions may be reversibly extracted along a flat 3.7 V plateau, while all three lithium ions have been removed from α -Li₃V₂(PO₄)₃.

Extensive X-ray and neutron diffraction and ⁷Li/⁶Li NMR experiments have been conducted on α - and β -Li₃V₂(PO₄)₃.^{3,4} However, there have been no Raman or infrared spectroscopic studies of these compounds as a function of Li⁺ content. Here we report vibrational spectroscopic studies of α - and β -Li₃V₂(PO₄)₃ at various states of charge. Vibrational spectroscopic studies of LiFePO₄ clearly show changes in the intramolecular PO₄³ vibrations when Li⁺ ions are removed.⁵ Similarly, we expect the PO₄³⁻ anions in α - and β -Li₃V₂(PO₄)₃ to be sensitive to Li⁺ ion extraction. The ability to contrast structurally different forms of Li₃V₂(PO₄)₃ is particularly valuable to gain insight into the electrochemistry of these materials.

Experimental Methods

The α -Li₃V₂(PO₄)₃ was synthesized from stoichiometric amounts of Li₂CO₃, V₂O₅, and NH₄H₂PO₄. The precursors were ball-milled in acetone overnight. After the acetone evaporated, the mixture was heated at 300°C for 1h under a 10%H₂-90%N₂ atmosphere to decompose the organic constituents. This was followed by an 18h thermal treatment at 900°C under the same atmosphere. The β -Li₃V₂(PO₄)₃ was prepared by ion exchange from rhombohedral Na₃V₂(PO₄)₃ (10 fold molar excess of LiNO₃). The procedure to prepare Na₃V₂(PO₄)₃ was identical to that of α -Li₃V₂(PO₄)₃ except Na₂CO₃ was substituted for Li₂CO₃.

Electrodes were prepared by mixing the appropriate active material with KS-6 graphite, Timcal (5 wt%); Super P, 3M (5 wt%); and Teflon (3 wt%). Size 2430 coin cells were constructed using Li metal anodes and 1 <u>M</u> LiPF₆ dissolved in (1:1) EC-DMC as the electrolyte. Cells were cycled at 0.10 mA/cm² with an Arbin battery cycler. Afterwards, the electrodes were extracted, washed twice in DMC, and dried under reduced pressure at 50°C. Mid- and far-IR spectra were recorded on a Bruker IFS 66v spectrometer using KBr and CsI pellet techniques. Raman spectra were collected with a Jobin-Yvon ISA T64000 spectrometer. A 532 nm excitation laser (~5 mW) was focused onto the electrodes through a microscope. Each spectrum consists of a 60 min acquisition to increase the signal to noise ratio.

Preliminary Data

Preliminary infrared spectra of α - and β -Li₃V₂(PO₄)₃ as a function of Li content are presented in Figs. 1 and 2, respectively. Numerous changes in the PO₄³⁻ stretching and bending modes result from the extraction of Li from α -Li₃V₂(PO₄)₃. Delithiation to α -Li₁V₂(PO₄)₃ produces new bands at 1172, 920, and 853 cm⁻¹. However, extracting all the Li⁺ ions results in the complete destruction of the PO_4^{3-} vibrational multiplet structure and results in broad bands for v(P-O) and δ (O-P-O).² Removing Li⁺ ions from β -Li₃V₂(PO₄)₃ causes the v(P-O) modes to collapse into a large band centered at 1000 cm⁻¹. In contrast to the α -Li₃V₂(PO₄)₃ is not degraded when the maximum amount of Li is deintercalated. This is evidenced by the sharpness of the β -Li₃V₂(PO₄)₃ bands at 560, 577, and 633 cm⁻¹ compared to the broad α -V₂(PO₄)₃ band at 596 cm⁻¹.

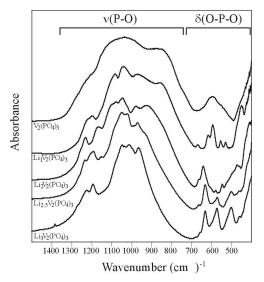


Fig. 1: Mid-IR spectra of α -Li_xV₂(PO₄)₃ where x = 3.0, 2.5, 2.0, 1.0, and 0.0.

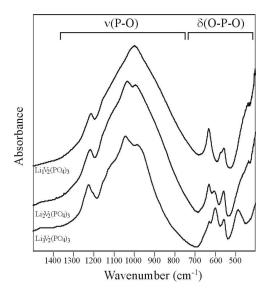


Fig. 2: Mid-IR spectra of β -Li_xV₂(PO₄)₃ where x = 3.0, 2.0, and 1.0.

References

- 1. J. Gaubicher, C. Wurm, G. Goward, C. Masquelier, and L. Nazar, *Chem. Mater.* **12**, 3240 (2000).
- M. Y. Saïdi, J. Barker, H. Huang, J. L. Swoyer, and G. Adamson, *Electrochem. and Solid-State Lett.* 5, A149 (2002).
- M. Morcrette, J.-B. Leriche, S. Patoux, C. Wurm, and C. Masquelier, *Electrochem. and Solid-State Lett.* 6, A80 (2003).
- S.-C. Yin, H. Grondey, P. Strobel, M. Anne, and L. F. Nazar, J. Am. Chem. Soc. 125, 10402 (2003).
- 5. C. M. Burba and R. Frech, J. Electrochem. Soc., accepted (2004).