Li₂RuO₃ as an Additive to LiCoO₂ in Li-ion Batteries Arnold M. Stux and Karen E. Swider-Lyons Naval Research Laboratory, Code 6171 Washington, DC 20375-5342 USA

We are studying composite $LiCoO_2/Li_2RuO_3$ electrodes because of their possible benefits in lithium ion batteries. Li_2RuO_3 is of interest because it is an electrochemically active material with low capacity fade and high theoretical capacity, but its practical voltage plateau is lower than that of $LiCoO_2$ (e.g., 3.5 vs 3.7 V, see Fig 1). Li_2RuO_3 had been found previously to play a stabilization role and contribute electrochemically to the layered insertion material $LiNiO_2$ [1]. Li_2RuO_3 has also demonstrated reversibility in lithium cells [2] and delithiated forms had been found to have lower resistivity [3].

The cycling performance of $Li_2RuO_3/LiCoO_2$ composites are studied with physical mixtures of Li_2RuO_3 and $LiCoO_2$ (45:55 w/w) by comparison to isolated $LiCoO_2$ and Li_2RuO_3 electrodes. The electrodes are tested as half cells vs. Li metal and in full batteries vs. carbonaceous anodes. Their losses, capacity fade, and cycling capacity are studied at C/5, 1C, and 2C rates.

Composite cathodes of Li_2RuO_3 and $LiCoO_2$ (45:55 w/w) have a significantly higher capacity when discharged between 4.3 and 2 V vs. the electrodes with only Li_2RuO_3 or $LiCoO_2$ at 1 C and C/5 rates. Fig. 1 shows the profile for a 1 C discharge from 4.3 to 2 V, and the majority of the capacity increase is observed from 3 to 2 V.

A significant increase in capacity is also observed in the first discharge of the electrodes with 7:1 w/w LiCoO₂ and Li₂RuO₃ vs. the LiCoO₂ and Li₂RuO₃ electrodes as shown in Fig. 2 for a 2 C rate. After continued cycling at 2 C, this trend changes, and the Li₂RuO₃ electrodes has a higher capacity than the LiCoO₂ and mixed electrodes (Fig. 3) and all electrodes have similar capacity fades.

This presentation will highlight progress in battery performance of the Li₂RuO₃/LiCoO₂ cathode composite.

Acknowledgments

The authors thank the Office of Naval Research. AMS is a post-doctoral fellow with the National Research Council.

References

- [1] G. J. Moore, C. S. Johnson and M. M. Thackeray, *J. Power Sources*, **119-121**, 216 (2003).
- [2] H. Kobayashi, R. Kanno, Y. Kamamoto, M. Tabuchi and O. Nakamura, *Solid State Ionics*, 82, 25 (1995).
- [3] H. Kobayashi, R. Kanno, Y. Kamamoto, M. Tabuchi and O. Nakamura, *Solid State Ionics*, 86-88, 859 (1996).

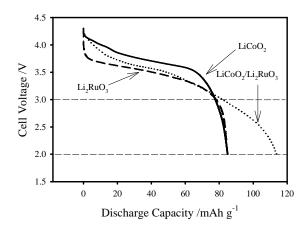
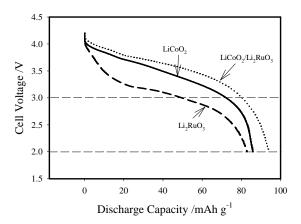



Figure 1. Initial discharge of $LiCoO_2$, Li_2RuO_3 , and $LiCoO_2/Li_2RuO_3$ (55:45 w/w) electrodes at a 1 C rate from 4.3 to 2 V.

Figure 2. Initial discharge of $LiCoO_2$, Li_2RuO_3 , and $LiCoO_2/Li_2RuO_3$ (7:1 w/w) electrodes at a 2 C rate between 4.2 and 2 V.

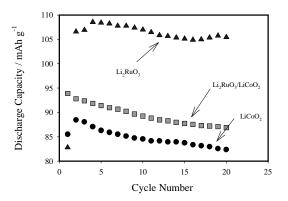


Figure 3. Comparison of capacity as a function of cycle number at 2C rates for $LiCoO_2$, Li_2RuO_3 , and $LiCoO_2/Li_2RuO_3$ (7:1 w/w) electrodes.