Ionic Conductivity studies of polymer electrolyte by addition of PDMAEMA, LiN(CF₃SO₃)₂ and various plasticizers.

E.H. Cha^{a,*, z}, C.W.Lee^b * ,D.R. Macfarlane^c

- ^a Institute of Science & Technology, Korea Univ., Jochiwon, 339-700, Choongnam, Korea
- ^b Dept. of Adv. Materials Chemistry, Korea Univ. Jochiwon, 339-700, Choongnam, Korea
- ^c Dept. of Chemistry, Monash Univ., Clayton, Victoria, 3800, Australia

Abstract

Polymer electrolytes which were based on Poly (N, N'-dimethylamino-ethyl-methacrylate) (PDMAEMA), PEO, $LiN(CF_3SO_2)_2$ (LITFSI) and tetraethylene glycol dimethyl ether(tetraglyme), EC+PC and DEP as plasticizers were examined their ionic conductivities and Ionic conductivity of the analysis. thermal PDMAEMA/PEO/LITFSI/tetraglyme(EC+PC and DEP) complexes was investigated as a function of temperature, various concentrations of LiTFSI, plasticizers and PDMAEMA.

Impedance spectroscopy and Differential Scanning Calorimeter (DSC) were used to characterize these samples. The higher conductivity was exhibited when 0.6mole/Kg PDMAEMA and 1.5mole/kg tetraglyme as a plasticizer was added (4.74*10⁻⁴Scm⁻¹at 25°C).

* Korean Electrochemical Society Active Member ^z E-mail:chaeunhee@korea.ac.kr

Experimental

The compositions of polymer electrolytes are PDMAEMA (20%)/ PEO (10%)/LiTFSI (0, 0.3, 0.6, 0.9, 1.2,1.5mole/kg)/tetraglyme(70%)(S1),EC+PC(70%)(S2), .DEP(70%) (S3), PDMAEMA (0, 10, 20, 23%) PEO/ LiTFSI (1.5 mole/kg)/ tetraglyme (70%) (S4),

Result & Discussion

Fig.1 Thermal analysis of S1

Fig.2 Conductivity of S4 by addition of the PDMAEMA

Fig.3 Conductivity of S1/S2/S3