Effect of Thickness of Water Film on Corrosion Behavior of Carbon Steel in Marine Atmosphere

Tadashi Shinohara*, Yuji Hosoya*, Wataru Oshikawa** and Shin-ichi Motoda***

* Materials Information Technology Station, National Institute for Materials Science

(1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047 Japan)

** College of Engineering, University of the Ryukyus (1, Sembaru, Nishihara, Okinawa, 903-0213 Japan)

*** Tokyo University of Marine Science and Technology (2-1-6, Etchujima, Koto-ku, Tokyo, 135-8533 Japan)

The relative humidity, *RH*, in equilibrium with solutions for various concentrations of sea salt could be calculated by using available thermodynamic data [1].

To confirm the relationships between chemical composition of water film and *RH* in actual environment, amount of absorbed moisture was measured. Stainless steel sheets and QCM, Quartz Crystal Microbalance, [2] were covered with given amount of simulated sea salt, W_s , which contained NaCl and MgCl₂ · 6H₂O; $m[Mg^{2+}]/m[Na^+] = 0.11$ [3], and were exposed in the constant humidity chamber for 2 ~ 4 h. The amount of absorbed moisture, W_{ab} , was determined as weight change during the exposure.

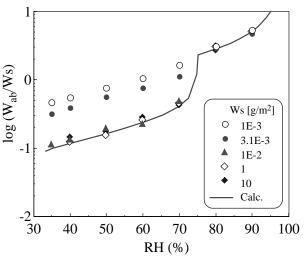
Relationships between the ratios of (W_{ab}/W_s) and *RH* are shown in Fig.1. The value of (W_{ab}/W_s) is also given as follows [1];

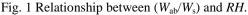
 $(W_{ab}/W_{s}) = \{(1000s/m_{2}) - 6sM_{w}\}/M_{t}\}$ (1) $M_{t} = M_{1} + sM_{2} + 6sM_{w}$

where $s=m[Mg^{2+}]/m[Na^+]=0.11$, m_2 is concentration of MgCl₂, and M_1 , M_2 and M_w are molecular weights of NaCl, MgCl₂ and water, respectively. This calculated value of (W_{ab}/W_s) is also plotted in the figure, and it agreed well with measured data, when Ws $\geq 10^{-2}g/m^2$. Thus, *d* is in proportion to W_s when Ws $\geq 10^{-2}g/m^2$.

Relationships between thickness of water film, d, and RH under various Ws conditions are shown in Fig.2. The values of d were calculated as follows [1];

 $d=(sW_s/M_tr_s) \cdot \{(M_1m_1/m_2)+M_2+(1000/m_2)\}$ (2) where r_s is specific gravity of the solution, and m_1 is concentration of NaCl.


Carbon steel coupons and QCM sensors [4] were sprayed with diluted sea water and dried to deposit given amount of sea salt on them. Carbon steel coupons were exposed in the constant humidity chamber for 1 month. As for QCM sensors, time variations of them were measured in the constant humidity chamber for $2\sim3$ h, and corrosion rate, $\Delta L/\Delta t$, was determined as;


 $(\Delta L/\Delta t)=(1/r_{\rm Fe})\bullet(M_{\rm Fe}/M_{\rm (OH)x})\bullet(\Delta m/\Delta t)$ (3) where $M_{\rm Fe}$ and $M_{\rm (OH)x}$ are molecular weights of Fe and (OH)_x, $r_{\rm Fe}$ is density of Fe, $r_{\rm Fe}=7.86 {\rm g/cm}^3$, and $(\Delta m/\Delta t)$ is mass change measured by QCM sensor. In this work, the primary corrosion product of Fe was considered to be Fe(OH)_{2.5}[4].

Exposure test results are shown in Fig. 3 in terms of corrosion rate, CR[mm/y], and thickness of water film, *d*. The value of *CR* increases with increasing *d* when d<56µm. It reaches up to the maximum of *CR*=0.28mm/y at *d*=56µm, and it takes the constant value of *CR*=0.16mm/y when *d*≥170µm.

References

- 1) W. Oshikawa, T. Shinohara and S. Motoda: Zairyo-to-Kankyo , **52**, 293 (2003).
- T. Konishi, T. Shinohara and S. Tsujikawa: Proc. the 9th Asian-Pacific Corrosion Control Conference, p.405 (1995).
- I. Muto and K. Sugimoto, Zairyo-to-Kankyo, 47, 519 (1998).
- 4) W. Oshikawa, S. Itomura, T. Shinohara and S. Tsujikawa: Zairyo-to-Kankyo, **51**, 398 (2002).

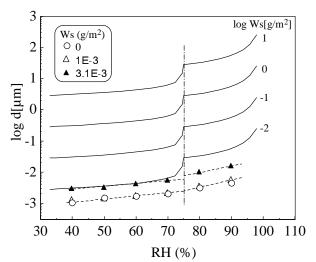


Fig.2 Relationship between d and RH under various $W_{\rm s}$ conditions.

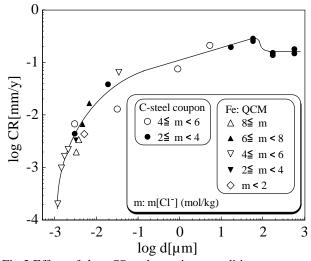


Fig.3 Effect of d on CR under various conditions.