Effects of Nitrogen in HfO₂ Gate Dielectric on the Electrical and Reliability Characteristics by N₂ plasma Jeon-Ho Kim, Kyu-Jeong Choi and Soon-Gil Yoon Department of Materials Engineering, Chungnam National University, Daeduk Science Town, 305-764, Daejeon, Korea

HfO2 and ZrO2 have received much attention and studied as possible candidates for high-k gate materials because of their modest dielectric constants and wide bandgap. However, these materials have weak resistance to oxygen diffusion, which causes growth of interfacial SiO_2 during high temperature annealing^{1,2}. Recently, there have been several reports on incorporating nitrogen into high-k materials to improve thermal stability of high-k gate dielectric^{3,4}. The high-k dielectric nitrated by NH₃ is known to reduce EOT and leakage current density. However, it also causes an increase of an interface trap density.³. Therefore, nitrogen (N_2) is necessity to use instead of NH₃ in plasma treatment to improve electrical properties. In this work, nitrogen incorporation into HfO₂ films was investigated for gate dielectric applications.

After standard cleaning of p-type Si (100) wafers, 5 nm thick-HfO₂ films were deposited by plasma-enhanced chemical vapor deposition using hafnium tertiarybutoxide $(Hf[OC(CH_3)_3]_4)$ as the precursor in the absence of O2. The deposition conditions were performed at a temperature of 300°C, a pressure of 0.5 Torr and an RF power of 40 W. The precursor was vaporized in a bubbler maintained at 30°C and was carried to the reactor using argon (purity 99.9999 %) as the carrier gas. The surface of the cleaned Si substrates (bottom-side of HfO₂) and topside of HfO₂/Si were treated at 300°C by N₂ plasma at 70 W for 10 min. The HfO_2 dielectrics with and without N_2 plasma treatment were annealed at 700°C for 1 min in an N₂ ambient. A TaN film with 200 nm thickness was then deposited by a dc reactive sputtering with a dc power of 100 W at room temperature in nitrogen ambient. After patterning the electrode, the samples were annealed at 900°C in N2 (purity 99.9999 %) for 1 min.

Figures 1 show AES depth-profiles of HfO2 dielectrics deposited at 300 °C after N2 plasma annealing, Nitrogen of approximately 8 atom % in samples treated by N₂ plasma at 70 W was accumulated at the HfO₂/Si interface. As shown in Fig. 2, N₂ plasma-treated HfO₂ films exhibited an improvement of EOT and leakage current density compared with samples without plasma treatment. The capacitors treated by both sides of HfO2 films exhibited the lowest EOT and leakage current density of approximately 1.5 nm and 1.8 x 10⁻⁵ A/cm² at -1.5 V, respectively. The interface trap density (D_{it}) of HfO₂ capacitors treated by N2 plasma as a function of applied voltage was shown in Fig. 3. D_{it} was obtained at mid-gap values consisting with the transition region of depletion and inversion. $D_{it}\xspace$ in a $N_2\xspace$ plasma treated $HfO_2\xspace$ capacitors was similar to that of fresh-HfO₂ capacitors and remains constant at approximately $1.3 \times 10^{11} \text{ cm}^{-2} \text{eV}^{-1}$. This result suggested that a N_2 plasma treatment in a HfO_2 gate dielectric did not influence on the interface characteristics compared with NH₃ plasma treatment.

The bottom, top, and both side of HfO_2 gate dielectrics were treated by N_2 plasma to improve a thermal stability of hafnium-based gate dielectrics. The HfO_2 films treated at both sides by N_2 plasma exhibited the lowest EOT and leakage current density, and comparable interface charge density to films without plasma treatment. A N_2 -plasma treatment in a HfO_2 gate dielectric is a promising technique to give a good reliability in a high-k gate dielectric.

References

- 1. G. D. Wilk et al, J. Appl. Phys., 89, p.5243 (2001).
- 2. R. Choi et al, Symp. VLSI Tech., p.15 (2001).
- 3. A.L.P. Rotondaro et al, VLSI Tech., p.148 (2002)
- 4. M. Koyama et al, Tech Digest of IEDM, p.459 (2001)
- 5. H. J. Cho et al, Tech. Digest IEDM, p.655 (2001)

Fig. 1 AES depth-profiles of HfO_2 films on the surface of Si (100) treated by N_2 plasma at 70 W.

Fig. The variation of EOT and leakage current density in $TaN/HfO_2/Si$ capacitors treated by N_2 plasma.

Fig. 3 Interface trap density of HfO_2 capacitors treated by N_2 plasma as a function of applied voltage.