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Key hardware in future ubiquitous society is intelligent
digital systems on an ultra-small chip operating with
ultra-low power. For its realization, further advanced LSI
technology beyond the scaling limit of Si CMOS
technology are required. As a possible approach, a novel
hexagonal BDD quantum circuit[1,2] was proposed and
has been investigated by the authors. The purpose of this
paper is to study design and implementation of ultra-low-
power minute digital systems utilizing hexagonal BDD
quantum circuits on GaAs-based hexagonal nanowire
network controlled by nano-Schottky wrap gates (WPGs).

The hexagonal BDD quantum circuit utilizes
binary-decision-diagram architecture where a logic
function is represented by a directed graph as shown in
Fig. 1(a). It consists of binary path-switch node devices.
Arranging the devices for the graph formation results in a
hexagonal layout naturally. The logic is evaluated by
propagating messengers along the graph. Using a single
electron (SE) or a few electrons as the messenger, and
controlling them by small energy, power-delay product
(PDP) decreases greatly and approach to quantum limit.
To manipulate small number of electrons precisely,
quantum transport through a quantum wire (QWR) or dot
controlled by WPGs is used as shown in Figs.1(b) and (c).

Fabricated WPG-based BDD node devices and
fundamental logic elements on etched GaAs nanowire
hexagons showed correct operations either in quantum
regime at low temperature or in classical regime at room
temperature. This is because WPG-controlled nanowires
can also operate as conventional FETs by adjusting drain
and gate voltages, corresponding to trading with PDP
value. Then, the present circuits can avoid the problem of
temperature for correct operation in quantum circuits.

The hexagonal BDD can implement any
combinational circuits in planar without branch crossover.
Fig. 2(a) shows a fabricated QWR-type 8-bit adder,
where 84 devices are integrated using 25M devices/cm2

fabrication process. This is the highest scale of device
integration in the quantum nano-device circuits. Various
subsystems for arbitrary bit can be designed and typical
ones were fabricated and confirmed correct operations as
shown in Fig. 2(b).

Feasibility of this approach for digital system
implementation was clarified by successful design of a
static 2-bit processor, called nanoprocessor (NPU), as
shown in Fig. 3. Execution core is the quantum BDD-
based ALU. Sequential circuits and level adjusters are
designed with WPG-controlled nanowire FETs, thus
whole of the system can be implemented on a hexagonal
network structure. Operation of each component has been
confirmed by experiment or simulation. Estimated system
power consumption was only 10 nW at 10 MHz in

quantum regime. GHz operation capability of systems
was found from measured cutoff frequency over 2 GHz of
discrete WPG devices.

For further high-density integration of the system
with narrower nanowires, formation of embedded GaAs
nanowires by selective MBE growth has been investigated.
As shown in Fig.4, hexagonal networks over 200M
nodes/cm2 could be successfully formed, which will
realize 20 x 29 µm2 size of the 2-bit NPU. Node devices
using embedded nanowires were fabricated and
characterized[3], showing good prospects of the nanowire
networks for implementing the systems in high dense.
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Fig. 1 Concept and implementation of hexagonal BDD circuits.
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Fig. 2  (a) Fabricated 8-bit adder and (b) 2-bit adder operation.
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Fig. 4 High-density hexagonal embedded nanowire network.
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Fig. 3  Hexagonal BDD-based 2-bit nanoprocessor design.
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