Temperature Influence on the Generation Lifetime Determination Based on Drain Current Transients in Partially Depleted SOI nMOSFETs

²LSI/PSI/USP, University of São Paulo, Brazil

- ³ Centro Universitário da FEI, S.B.Campo, Brazil
 - ⁴ E.E. Dept. KU Leuven, Leuven, Belgium e-mail: martino@lsi.usp.br

Carrier lifetime in SOI MOSFETs is an important parameter for technology characterization and device performance. Several authors have reported generation lifetime measurement methods using SOI MOSFETs [1-4], but most of them require complicated data analysis. Floating body Partially Depleted (PD) SOI MOSFETs exhibit drain current transients [5-8] and these can be used to determine the generation lifetime, τ_g , without numerical analysis [9]. The use of the above methods to obtain τ_g for different temperatures can take a long time, while for many applications one only needs at dedicated operation temperatures an estimation of τ_g to evaluate the impact of the wafer quality and/or some process steps.

This paper presents an analysis of the temperature influence on the τ_g determination using drain current transients in floating body PD nMOSFETs[9] fabricated in a 0.13 μ m SOI CMOS technology.

Figure 1 shows the measured drain current transients $I_d(t)$ normalized to the steady-state current level $I_{d\infty}$ for a PD SOI nMOSFET after switching its gate from $V_{\text{Ghigh}}=0.7\text{V}$ to $V_{\text{Glow}}=0.1\text{V}$ at different temperatures in the 20°C to 80°C range. As can be easily seen, the I_d is significantly suppressed immediately after the negative voltage step and it gradually increases towards the steady-state value due to the generation of holes. The magnitude of the transient time T_0 decreases with increasing temperature. Applying the τ_g calculation method [9] for a nMOSFET with $L=W=10 \ \mu\text{m}$, a gate oxide thickness $t_{ox}=2.5 \ \text{mm}$ and a film doping concentration $N_a=5.5 \times 10^{17} \ \text{cm}^{-3}$ as used in this work, a τ_g of 0.09 μ s is obtained at 20°C.

The expression used to calculate τ_g has 3 terms [9]: a factor F, n_i (intrinsic carrier concentration) and T_o . The F factor is a function of both t_{ox} and N_a . Figure 2 shows the temperature dependence of the F factor, n_i and T_o for the same device operating between 20^oC to 80^oC. In spite of the fact that n_i strongly increases with temperature, T_0 decreases almost with the same rate and the F factor only slightly increases from 6.82×10^{-19} (at 20^oC) to 7.71×10^{-19} cm³ (at 80^oC). Taking as a reference the F factor at 20^oC (F₁) the change to 80^oC (F₂) is about 13%. The sensitivity of F to t_{ox} and N_a is also studied and the maximum change in F is about 17%, obtained at 80^oC and with ±10% error on N_a .

As for many applications the F factor changes can be neglected, a simple method to estimate τ_g at different temperatures is proposed using the equation below.

$$\boldsymbol{\tau}_{g3} = \left[\boldsymbol{\tau}_{g1} \cdot \left(\frac{T_3}{T_1}\right)^{3/2} \cdot e^{-\frac{1}{2.K} \left(\frac{E_{s3}}{T_3} - \frac{E_{s1}}{T_1}\right)}\right] \cdot \left(\frac{T_{0,2}}{T_{0,1}}\right)^{\left(\frac{T_3 - T_1}{T_3 - T_1}\right) \cdot \left(\frac{T_2 - T_1}{T_2 - T_1}\right)}$$

It is only required to measure T_0 at 2 different temperatures T_1 and T_2 and to calculate τ_{g1} at T_1 in order to determine τ_{g3} at any arbitrary temperature T_3 . Figure 3 shows the experimental τ_g values for different operation temperatures using [9] and the proposed method. A good agreement is observed and the maximum error, including both, the F factor and the apparent linear approximation errors, is estimated to be around 6%. **References**

[1] S. Sinha, A. Zaleski and D. Ioannou, IEEE Trans. Electron Devices, vol. 41, p.2413, Dec., 1994.

[2] S. Venkatesan, R. Pierret and G. Neudeck, IEEE SOI Conference, p.120, 1992.

[3] N. Yasuda et al., IEEE Trans. Electron Devices, vol. 39, p.1197, May, 1992.

[4] D. Ioannou et al., IEEE Electron Device Letter, vol.11, p.409, Sept., 1990.

[5] H. Shin et al. IEEE Trans. Electron Devices, vol. 43, p.318, Feb., 1996.

[6] K. Kato and K. Tanaguchi, IEEE Trans. Electron Devices, vol. 33, p.133, Jan. 1986.

[7] H.K. Lim and J. Fossum, IEEE Trans. Electron Devices, vol. 31, p.1251, Sep. 1984.

[8] H. Shin et al., Solid-State Electronics, vol.43, p.349, 1999.

[9] H. Shin et al., IEEE Trans. Electron Devices, vol. 45, p.2378, Nov., 1998.

Figure 1 – Temperature dependence of the drain current transients drain current measured after applying a switch-off gate voltage step.

Figure 2 – Theoretically calculated F factor and n_i values and experimentally obtained T_0 as a function of temperature.

Figure 3 – Generation lifetime values obtained experimentally and by using the proposed method.