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The wuse of sizemonodisperse, high-anisotropy
nanoparticles in magnetic recording media is emerging as
a likely route to extend recording densities beyond 100
Ghit/in2. The L10 (fct) phase of both CoPt and FePt have
been considered as they exhibit outstanding magnetic
characteristics, with Ku equalling 5x107 and 6.6x107
ergs/’cm3 respectively (1,2).

In this study the biological macro-molecule Ferritin (an
iron storage protein) was used as a precursor to create an
empty, spherical shell template with core diameter ~8nm.
This template was used as a reaction vessel for the
synthesis of CoPt nanoparticles. Under specific
controlled conditions it was possible to grow stable
nanoparticles with Co:Pt = 1.1 stoichiometry in aqueous
dispersion (Fig.1 a, b).

To be useful in magnetic storage applications the protein-
encapsulated nanoparticles are heat treated in order to:

1. Anneal and transform the metal alloy core (Co:Pt
or Fe:Pt) to the magnetically highly anisotropic
L 10 (fct) phase (Fig.2a, b);

2. Carbonise the protein shell by controlled
pyrolysis.

A similar treatment is required for magnetic nanoparticles
produced by the well known reverse micelle technique
where the particles are encapsulated within organic
surfactants.  However, under the high temperature
required (600 C-700 C), the surfactant around each
nanoparticle decomposes / evaporates and the particles
sinter (e.g. 3), leading to undesirable grain size growth.
As a consequence, magnetic exchange coupling is
induced which compromises the magnetic performance of
the media.

A sdignificant possible advantage of using ferritin-
encapsulated nanoparticles is their relatively high carbon
content. By controlled pyrolysis the protein shell can be
transformed into stable amorphous carbon, or even into a
graphitic (fullerenic) capsule around the nanoparticle (5).
In this study we investigate the specific annealing
conditions required to optimise the two processes above
and so alow crystalographic transformation of non-
sintered nanograins.
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Fiz. 1 Schematic for the production of biologically-
derived magnetic nanoparticles. Armorphous
ferrihydrite 13 reduced and removed from farrtm
protemms o form apofermun {a), wlich 13 then
reconstituted with oms of Co and Pi, and
chemically reduced to form a fall metal alloy core
(b} that 13 uldmately annealed to form the L1, phase
encazed in a carbonized matx (o).
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Fig. 2 (A) A high-resolution TEM micrograph, showing
a lattice image of post-annealed nanoparticles of
C050:Pt50 at. % ( scale bar — 2nm);

(B) TEM diffraction pattern , taken on those particles,
showing L 10 structure formation.



