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The use of size-monodisperse, high-anisotropy 
nanoparticles in magnetic recording media is emerging as 
a likely route to extend recording densities beyond 100 
Gbit/in2.  The L10 (fct) phase of both CoPt and FePt have 
been considered as they exhibit outstanding magnetic 
characteristics, with Ku equalling 5x107 and 6.6x107 
ergs/cm3 respectively (1,2). 
 
In this study the biological macro-molecule Ferritin (an 
iron storage protein) was used as a precursor to create an 
empty, spherical shell template with core diameter ~8nm.  
This template was used as a reaction vessel for the 
synthesis of CoPt nanoparticles.  Under specific 
controlled conditions it was possible to grow stable 
nanoparticles with Co:Pt = 1:1 stoichiometry in aqueous 
dispersion (Fig.1 a, b). 
 
To be useful in magnetic storage applications the protein-
encapsulated nanoparticles are heat treated in order to: 
 

1. Anneal and transform the metal alloy core (Co:Pt 
or Fe:Pt) to the magnetically highly anisotropic 
L10 (fct) phase (Fig.2a, b); 

2. Carbonise the protein shell by controlled 
pyrolysis. 

 
A similar treatment is required for magnetic nanoparticles 
produced by the well known reverse micelle technique 
where the particles are encapsulated within organic 
surfactants.  However, under the high temperature 
required (600 C-700 C), the surfactant around each 
nanoparticle decomposes / evaporates and the particles 
sinter (e.g. 3), leading to undesirable grain size growth.  
As a consequence, magnetic exchange coupling is 
induced which compromises the magnetic performance of 
the media. 
 
A significant possible advantage of using ferritin-
encapsulated nanoparticles is their relatively high carbon 
content.  By controlled pyrolysis the protein shell can be 
transformed into stable amorphous carbon, or even into a 
graphitic (fullerenic) capsule around the nanoparticle (5).  
In this study we investigate the specific annealing 
conditions required to optimise the two processes above 
and so allow crystallographic transformation of non-
sintered nanograins. 
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Fig. 2  (A) A high-resolution TEM micrograph, showing 
a lattice image of post-annealed nanoparticles of 
Co50:Pt50 at. % ( scale bar – 2nm); 
 (B)  TEM diffraction pattern , taken on those particles, 
showing L10 structure formation.   
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