GROWTH OF RuO₂ BY ELECTROCHEMICAL-AND GAS-PHASE-OXIDATION OF A Ru(0001) SURFACE

M.B. Vukmirovic, R.L. Sabatini, R.R. Adzic Department of Materials Science, Brookhaven National Laboratory, Upton, NY 11973

Ruthenium is important as a catalyst in gas-phase catalysis and as a co-catalyst material in Pt-Ru fuel-cell electrocatalysis. In electrocatalysis, it provides active oxygen that facilitates the oxidation of CO, which blocks the Pt surface for H₂ or methanol oxidation. This behavior is a strong incentive for studying the surface oxidation of Ru. RuO₂ grows epitaxially at elevated temperatures (600-800 K) in the presence of a large amount of molecular oxygen on the Ru(0001) surface; its (110) face is oriented parallel to the substrate's surface [1]. In contrast, an ex situ UHV-electrochemical study shows that the oxidation at very high positive potentials (1.37 V vs. RHE) results after annealing at 800 K in RuO₂ epitaxial growth with its (100) plane parallel to the Ru(0001) surface, [2]. Both the electrochemical and in situ surface x-ray scattering studies revealed that the surface oxidation of Ru(0001) in acid solutions is limited to an one-electron process involving the uptake of one monolayer oxygen at potentials below the onset of bulk oxidation at 1.25 V vs. RHE [3]

In this work, we discuss our findings on the electrochemical oxidation of an Ru(0001) surface to RuO₂ in 0.05 M H₂SO₄ solution at high positive potentials, and also describe a new simple method for growing RuO₂(110) by the oxidation of Ru(0001) in argon containing 115 ppm of O₂. We compare these two oxidation processes. In the electrochemical reaction, a large number of RuO₂ islands formed, randomly distributed on terraces and steps, while in gas-phase oxidation, large stripes of ordered RuO₂(110) grew from the edges of the steps.

A disk-shaped Ru(0001) single crystal was mechanically polished and then annealed by inductive heating in a stream of Ar-15% H₂ gas mixture on an Al₂O₃ support inside a quartz tube. The crystal was heated to approximately 1400 K, and held there for 30-60 s. After cooling to room temperature in the Ar-15% H₂ atmosphere, a droplet of 0.05 M H₂SO₄ was placed on the crystal's surface. Thus protected, the crystal was transferred to an electrochemical cell filled with 0.05 M H₂SO₄ for investigation. Such annealing yields a wellordered Ru(0001) surface of comparable quality to one prepared by the UHV method. Chemical oxidation was initiated by inductive heating in a mixture of Ar and 115 ppm O₂. The oxide was formed during cooling period at temperatures ranging from 600-800 K.

In situ ECSTM showed that the oxidation of the Ru(0001) surface starts at steps' edges (inset of Fig. 1), and proceeds through the formation of randomly distributed RuO₂ islands (Fig.1). Oxidizing Ru(0001) by O₂ (115 ppm) in Ar generates an entirely different morphology, with the RuO₂ oxide deposited as rectangular stripes of monolayer height (Fig. 2). The growth of these stripes is globally initiated at the step edges; their orientation is unidirectional, forming a 60° angle with the steps' direction. The difference in RuO₂ growth in the two cases probably is because electro-oxidation took place at room temperature, whereas chemical oxidation was carried out at elevated

temperatures (600 - 800 K) that mobilized the reaction species, thus facilitating ordering of the oxide layer.

Further analysis of RuO₂ growth and the results of the potentiostatic pulse measurements also will be discussed.

Acknowledgements

This work is supported by U.S. Department of Energy, Divisions of Chemical and Material Sciences, under the Contract No. DE-AC02-98CH10886.

References

1. H. Over, A.P. Seitsonen, E. Lundgren, M. Schmid, P. Varga, *Surf. Sci.*, **515**, 143 (2002).

2. W.F. Lin, M.S. Zei, Y.D. Kim, H. Over, and G. Ertl, J. *Phys. Chem. B*, **104**, 6040 (2000).

3. J.X. Wang, N.S. Marinkovic, H. Zajonz, B.M. Ocko, and R.R. Adzic, *J. Phys. Chem. B*, **105**, 2809 (2001) (and references therein).

Fig.1. RuO_2 on Ru(0001) oxidized in 0.05 M H₂SO₄ at 1.35 V vs. RHE. Inset shows oxidation of step edges obtained at 1.17 V vs. RHE.

Fig. 2. ECSTM image of Ru(0001) oxidized in Ar + 115 ppm of O_2 obtained in 0.05 M H₂SO₄. The upper left inset is Fourier transform of an atomically resolved flat region between rectangular stripes corresponding to "bare" Ru(0001) surface, while the bottom right inset shows the RuO₂(110) lattice seen in Fourier transform of an atomically resolved image of rectangular stripes.