Boron diffusion and activation in polycrystalline Si_{1-x}Ge_x films for CMOS gate electrodes

T. Sulima, J. Schulze, U. Abelein, A. Ludsteck, I. Eisele Institute of Physics (EIT 9.2)

University of the German Federal Armed Forces Munich Werner-Heisenberg-Weg 39, D-85577 Neubiberg, Germany

INTRODUCTION

We have studied the B diffusion process in polycrystalline $Si_{1-x}Ge_x$ films fabricated by means of molecular beam epitaxy (MBE) on top of thermally grown SiO₂ dielectric films. The diffusion parameters: diffusion length $L(T_A, t_A)$, diffusion coefficient D(T), diffusion constant D_0 , and activation energy W_A were investigated as functions of Ge mole fraction *x* in the grown films and of MBE deposition temperature T_D for achieving different poly grain sizes. The stochiometry of the grown polycrystalline Si_{1-x}Ge_x films was determined by Rutherford-backscattering spectrometry (RBS).

For an accurate determination of $L(T_A, \tau)$ for different annealing temperatures T_A and annealing process times τ we used the delta doping technique to obtain a well defined initial B depth and concentration profile $c_B(z, T_A = 0, \tau = 0)$ in the fabricated Si_{1-x}Ge_x films. The annealing process time τ consists of the temperature ramping time t_R and the annealing time t_A at T_A . Rapid thermal annealing (RTA) was used to minimize B diffusion during ramping times t_R . The B and the Si_{1-x}Ge_x concentration profiles were measured by means of secondary ion mass spectrometry (SIMS).

SAMPLE PREPARATION

By using MBE an undoped homogeneous Si_{1-x}Ge_x film $(0 \le x \le 1)$ with a thickness of 150nm was grown at a temperature T_D ($T_D = 200/500/700^{\circ}C$) on top of a 10nm thermally grown SiO₂ film. In a second step pure B with a dose of $\varphi_0 = 5e12cm^{-2}$ was deposited at $T_D = 200^{\circ}C$. Finally an undoped 50nm Si cap was deposited also at $T_D = 200^{\circ}C$. This cap is needed to form an ultra-sharp and well defined buried B delta doping spike with a thickness smaller 3nm [1] and for an accurate SIMS analysis.

After MBE pieces of a grown sample were annealed by means of RTA each at an individual annealing time t_A and temperature T_A ($T_A = 750/800/850/900/950/1050^{\circ}C$). To determine the influence of the RTA ramping phases pieces were annealed at the chosen annealing temperatures T_A for $t_A = 0$. The resulting diffusion profiles $c_B(z, T_A, \tau)$ were measured by SIMS.

DIFFUSION MODELLING

Time and temperature dependent impurity diffusion processes are described by the second Fick's law:

$$d/dt[c(z, T, t)] = D(T)^{*}d^{2}/dz^{2}[c(z, T, t)].$$
 [1]

For an initial ultra-sharp impurity concentration $c(z = 0, T < T_{crit}, t = 0) = \varphi_0$ the solution of eq.1 is given by:

$$c(z, T, t) = 2^* \varphi_0 / (\pi^{0.5} L(T, t)) \exp(-z^2 / L(T, t)^2).$$
[2]

Below the critical temperature T_{crit} diffusion is negligible. The diffusion length L(T, t) is given by :

$$L(T, t) = 2^* (D(T)^* t)^{0.5}.$$
 [3]

The diffusion coefficient D(T) is given by :

$$D(T) = D_0 * exp(-W_A / (k_B * T)).$$
[4]

RESULTS

To calculate the diffusion coefficient $D(T_A)$ as function of Ge mole fraction *x*, MBE deposition temperature T_D , and annealing temperature T_A the diffusion length $L(T_A, \tau = t_A)$ was calculated by:

$$L(T_{A}, \tau = t_{A}) = L(T_{A}, \tau = t_{R} + t_{A}) - L(T_{A}, \tau = t_{R}).$$
 [5]

The diffusion lengthes $L(T_A, \tau = t_R + t_A)$ and $L(T_A, \tau = t_R)$ were extracted from the individual SIMS profiles (see fig.1).

Fig.1: $ln[c(z, T_A, \tau)]$ vs. z^2 for Ge mole fraction x = 0.2and $T_D = 500^{\circ}C$

The individual activation energy W_A and diffusion constant D_0 as functions of Ge mole fraction x and MBE deposition temperature T_D were extracted from an Arrhenius plot $ln[D(T_A)]$ vs. $1/T_A$ (see fig.2).

Fig.2: Arrhenius plot $ln[D(T_A)]$ vs. l/T_A for Ge mole fraction x = 0.2 and $T_D = 500^{\circ}$ C

As known from literature the activation energy W_A of B in Si is $W_A = 3.46 \ eV$. This is in accordance to our experimental results for polycrystalline Si. With increasing Ge mole fraction x the B activation energy decreases. This allows a lower thermal budget for CMOS processing. Experimental results of the whole process parameter matrix given by deposition temperature T_D , Ge mole fraction x, annealing temperatures T_A , and annealing times t_A are presented. In addition the poly grain size dependence will be discussed.

REFERENCES

[1] Zeindl, Wegehaupt, Eisele, Oppolzer, Reisinger, Tempel, Koch, Appl. Phys. Lett. 50 (1987) 1165