Electrical Properties of B-doped Polycrystalline Si_{1-x-y}Ge_xC_y Film Deposited by Ultraclean Low-pressure CVD

Hyunyoung Shim, Masao Sakuraba and Junichi Murota*

Laboratory for Electronic Intelligent Systems, Research Institute of Electrical Communication, Tohoku University 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan *Corresponding Author :Tel.&Fax : +81-22-217-5548 E-mail : murota@riec.tohoku.ac.jp

Polycrystalline(poly)-Si_{1-x-y}Ge_xC_y as a gate material has attracted much interest to achieve low power consumption and high performance of devices by the control of threshold voltage because of its variable work function [1,2]. However, little is known about electrical properties of poly-Si_{1-x-y}Ge_xC_y. In the present work, the electrical properties and heat-treatment effects of B-doped poly-Si_{1-x-y}Ge_xC_y are investigated, and B segregation at grain boundaries in poly-Si_{1-x-y}Ge_xC_y is discussed.

About 350 nm-thick poly-Si_{1-x-y}Ge_xC (x≤0.62, y ≤ 0.008) films were deposited at 500-650°C in a SiH₄-GeH₄-SiH₃CH₃-H₂ gas mixture using an ultraclean hotwall LPCVD system [3]. The substrates used were p-type Si wafers of 8-12 Ω cm with mirror-polished (100) surface. The oxide film was thermally grown on the substrates before poly-Si_{1-x-y}Ge_xC_y deposition. $^{11}B^+$ was implanted at 35keV and the dose was adjusted to concentration of 1.5×10^{20} cm⁻³. The samples were heattreated in N2 at 600, 700, 800, 900 °C for 1h, or 900 °C for 1h followed by 700 °C for 24h, where the surface was covered with low-temperature CVD SiO2. Ge and C fractions were determined by X-ray photoelectron spectroscopy (XPS). Grain size and crystallization degree of the films were measured by X-ray diffraction (XRD). Resistivity, carrier concentration and hall mobility were evaluated by van der Pauw method.

The resistivity in B-doped poly- $Si_{1-x-y}Ge_xC_y$ films decreases with increasing heat-treatment temperature up to 900 °C (Fig. 1). This results from the crystallization and redistribution of B in the film. The resistivity decreases with increasing Ge fraction and increases with increasing C fraction. The grain size scarcely depends on the Ge and C fraction in the present condition at 900 °C (Table 1). On the other hand, the crystallization degree of poly- $Si_{0.52}Ge_{0.48}$ and $Si_{0.52}Ge_{0.48}(C)$ (C fraction 0.008) is larger than that of poly-Si (Table 1). Since resistivity of B-doped epitaxial Si is almost the same as those of B-doped epitaxial Si_{0.52}Ge_{0.48} and Si_{0.52}Ge_{0.48}(C) at B concentration of 1.5×10^{20} cm⁻³ [4], it is considered that the resistivity is influenced by existence of Ge, C and B at grain boundary. In the case of B-doped epitaxial films, the carrier concentration is nearly equal to B concentration up to approximately 2×10^{20} cm⁻³ regardless of the Ge fraction and C fraction (y<0.016) [4], and scarcely changes by heat-treatment [5], while the carrier concentration of Bdoped poly-Si_{1-x-y}Ge_xC_y heat-treated at 900°C increases with increasing Ge fraction and decreasing C fraction (Table 1). By subsequent heat-treatment at lower temperature of 700°C for 24h, resistivity increases (Fig. 1), and B atoms are deactivated (Table 1). Because the degree of poly-Si is larger than those of the others, it is suggested that B segregation at grain boundaries is suppressed by existence of Ge or C, and carriers are trapped at grain boundaries under the existence of C.

References

- [1] T.J. King, J.P. McVittie, K.C. Saraswat, J.R. Pfiester, IEEE Trans. Electron Devices 41 (1994) 228.
- [2] H. Shim, M. Sakuraba, T. Tsuchiya, J. Murota, Appl. Surf. Sci. 212 (2003) 209.
- [3] J. Murota, T. Matsuura, M. Sakuraba, Surf. Interface Anal. 34 (2002) 423.
- [4] T. Noda, D. Lee, H. Shim, M. Sakuraba, T. Matsuura, J. Murota, Thin Solid Films 380 (2000) 57.
- [5] J. Noh, S. Takehiro, M. Sakuraba, J. Murota, Appl. Surf. Sci. 224 (2004) 77.

Fig. 1. Heat-treatment temperature dependence of the resistivity in B-doped poly- $Si_{1-x-y}Ge_xC_y$ films.

Table 1. Characteristics of B-doped poly- $Si_{1-x-y}Ge_xC_y$ films heat-treated at 900 °C with/without subsequent heat-treatment at 700°C for 24h.

	poly-Si	poly- Si _{0.52} Ge _{0.48}	poly- Si _{0.52} Ge _{0.48} (C)
Grain size (nm)	25-55	34-40	33-39
Crystallization degree (A.U.)	1	2.2	2.0
Resistivity (Ωcm) 900 °C 1h	6.4×10 ⁻³	2.3×10 ⁻³	6.0×10 ⁻³
Resistivity (Ωcm) 900 °C 1h +700 °C 24h	1.2×10 ⁻²	2.8×10 ⁻³	6.9×10 ⁻³
Carr. conc. (cm ⁻³) 900 °C 1h	6.9×10 ¹⁹	1.1×10^{20}	5.5×10 ¹⁹
Carr. conc. (cm ⁻³) 900 °C 1h +700 °C 24h	3.6×10 ¹⁹	9.2×10 ¹⁹	4.2×10 ¹⁹