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INTRODUCTION 
The Schottky source/drain MOSFET (SSD-MOSFET) 

(1,2) is an attractive design for ballistic MOSFETs 
because it has the potential to allow high-energy carrier 
injection from a metal source to an intrinsic channel. This 
structure offers a new insight regarding nanoscale 
MOSFETs. However, achieving high-drive current is 
difficult because of the relatively high potential barrier 
(Schottky barrier) at the source. To overcome this 
problem, we have proposed Schottky-barrier-height 
(SBH) engineering through semiconductor bandgap 
modulation with the introduction of SiGe alloy and 
germanosilicide(3). However a simpler material system is 
preferable for mass-production SBH engineering. 

In this paper, we demonstrate a new SBH engineering 
technique where strain is induced to lower the conduction 
and valence bands lowering of Si channel. We found the 
SBH at the source/channel junction could be modulated 
by tensile-stress applied to the Si channel. The current 
drivability of a strained-Si channel SSD-pMOSFET was 
thus improved partly from barrier reduction and partly 
from mobility enhancement. 

DEVICE FABRICATION 
Figure 1 is a TEM micrograph of a fabricated 50-nm-

gate device. Epitaxial layers were a 2-µm-thick SiGe 
graded buffer, a 1-µm-thick relaxed SiGe buffer, and a 
20-nm-thick strained Si channel. We intentionally left 
these layers undoped (< 1x1016cm-3) and varied the Ge 
content (x=10, 20, or  34%) in the SiGe buffer layer for 
comparison. The source and drain junction-depths were 
about 12 nm. Platinumsilicide (PtSi) formed only within 
the strained-Si layer. The SiGe buffer layer was not 
silicided (It was confirmed by the SIMS depth profile). 

DEVICE CHARACTERISTICS 
Figure 2 compares the drain current curves of a 200-nm 

gate-length device with a Ge content of either 20 or 34%. 
A 61% improvement was observed for x=34% compared 
to x=20%. In addition, the Gm curves for devices at a low 
drain voltage (Vd= -0.05V) showed a significant increase 
in Gm (Fig. 3). These drive current and transconductance 
improvements were caused partly by the reduced barrier 
height for the strained-Si channel and partly by the higher 
mobility of holes in the strained-Si channel. 

Figure 4 compares the gate length (Lg) dependence of Ion 
@Vｄ=Vg= -1.5V with various Ge contents. When Lg was 
50nm, Ion for x=34% increased by more than sixfold 
compared with that for x=10%. 

CONCLUSIONS 
 For the first time, we have demonstrated strained-Si 
channel SSD-MOSFETs. We also showed that strain can 
be used to reduce the SBH as an effective means of 
improving current drivability. By combining strained-Si 
channel SSD-MOSFETs with SSOI substrates (4), we can 
reduce the off-state leakage current and apply metal gate 
technology to adjust the threshold voltage. The strained-Si 
channel SSD-MOSFET is therefore a promising design 
for future nanoscale-MOSFETs. 
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Fig.1. TEM micrograph of a fabricated 
50-nm device. 
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Fig.1. TEM micrograph of a fabricated 
50-nm device. 
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Fig.2. Drain current curves for 200nm 
gate-length devices with different Ge 
content. The solid and broken curves 
are for x=34% and x=20%, respectively. 
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Fig.2. Drain current curves for 200nm 
gate-length devices with different Ge 
content. The solid and broken curves 
are for x=34% and x=20%, respectively. 

 

Fig.3. Transconductance for the strained-
Si channel SSD-MOSFETs as a parameter 
of the Ge content.
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Fig.3. Transconductance for the strained-
Si channel SSD-MOSFETs as a parameter 
of the Ge content.

-2 -1 00

5

10

15

Gate voltage Vg (V)

L/W = 0.20/1 (µm)

@ Vd= -0.05V

Tr
an

sc
on

du
ct

an
ce

 G
m

( µ
S/
µm

)

: x = 34%
: x = 20%
: x = 10%

-2 -1 00

5

10

15

Gate voltage Vg (V)

L/W = 0.20/1 (µm)

@ Vd= -0.05V

Tr
an

sc
on

du
ct

an
ce

 G
m

( µ
S/
µm

)

: x = 34%
: x = 20%
: x = 10%

Fig.4. Gate length dependence of 
Ion for the different Ge content.
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Fig.4. Gate length dependence of 
Ion for the different Ge content.
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