Fabrication of Indium-doped n-Fe₂O₃ Thin Films by Spray Pyrolytic Method for Photoelectrochemical Water Splitting

William B. Ingler Jr. and Shahed U. M. Khan Department of Chemistry and Biochemistry Duquesne University,Pittsburgh, PA. 15282

INTRODUCTION

The field of photoelectrochemical splitting of water using semiconductor electrodes has seen several advances over the past 30 years [1-6], but the greatest need is still the ability to produce a stable and low cost semiconductor with a low bandgap; therefore, being able to absorb a large amount of solar energy photons. Nonetheless, most of today's stable semiconductors absorb almost exclusively in the ultraviolet radiation range. Iron (III) oxide (Fe₂O₃) is a low-cost semiconductor having high stability and can absorb most of the visible light in the solar spectrum. Iron (III) oxide has a bandgap of 2.0 to 2.2 eV; therefore, it can absorb solar radiation from 565 to 295 nm, which comprises 38% of the photons of sunlight at AM 1.5 [7]. Although the Fe_2O_3 can absorb 38% of the sunlight, its photoresponse were found to be quite low [3-6] towards water splitting reaction due to its high resistivity and consequent recombination of photogenerated carriers. To minimize these effects, iron (III) oxide was doped with iodine [4] but no reports on indium doping have been made as of yet. An efficient n-Fe₂O₃ semiconductor can be used as an important front layer to protect a Si or an amorphous Si solar cell to be used in the back to supply the required photovoltage for efficient water-splitting reaction. In this study, we focused on spray pyrolytic (SPD) methods to fabricate In-doped p-Fe₂O₃ thin films with various dopant concentrations and substrate temperatures using different spray times.

EXPERIMENTAL

Thin films n-Fe₂O₃ were deposited by SPD methods on conducting tin-oxide coated glass using the spray solutions of different concentrations of 0.11 M FeCl₃·6H₂O having various concentrations (0.0022 M to 0.011 M) of InCl₃.6H₂O in 200 proof ethanol. The substrate (conducting tin oxide coated glass) temperature was varied from 410 °C to 425 °C. The spray solution was propelled by oxygen gas at a pressure of 20 psi at an interval of five min. after each 10 sec spray period. The electrolyte solution used for photoelectrochemical splitting of water was 1.0 M NaOH in a triply de-ionized water.

RESULTS AND DISCUSSION

Figure 1 shows the dependence of photocurrent density (j_p) as a function of measured electrode potential, E_{meas} vs SCE for the samples prepared at an optimal temperature of 415°C at optimum spray time of 60 seconds for different dopant solution concentrations. A maximum photo current density at an illumination intensity of 40 mW cm⁻² was observed A maximum quantum efficiency of 26.5% at wavelength of 295 nm. The threshold quantum efficiency at 565 nm corrresponds a bandgap of 2.2 eV for In-doped n-Fe₂O₃.

The presence of indium and iron (III) indium (III) oxides were confirmed from the results of X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) measurements. XPS results showed 1.5 atomic % indium-doping relative to other elements present on the surface. XRD data indicates that alpha (α) Fe₂O₃ is the only form of iron oxide present in the thin films. Indium

oxide from the indium-doped tin oxide substrate was identified. The indium doped into the iron (III) oxide formed FeInO₃.⁹ These peaks indicate that spray pyrolytically synthesized indium-doped n-Fe₂O₃ have mixed structures of α -iron (III) oxide and iron (III) indium (III) oxide (FeInO₃).⁸

The addition of optimum amounts of indium improved conductivity and photoresponse of spray-pyrolytically deposited thin films of $n-Fe_2O_3$ electrodes. The results of this study indicate the possibility of using other dopants or combinations of those dopants to improve the photoresponse of $n-Fe_2O_3^{10}$ for use in conjunction with an optimized $p-Fe_2O_3$ thin film electrode¹¹ to fabricate a p/n-Fe₂O₃ solar cell and use it for efficient photoelectrochemical water splitting.

REFERENCES

- [1] A. Fujishima, K. Honda, Nature, 283 (1972) 37.
- [2] S.U.M. Khan, M. Al-Shahry and W.B. Ingler Jr., Science.27(2002) 2243.
- [3] R.E. Bird, R.L. Hulstrom, L.J. Leis, Sol. Ener. 30 (1983) 563.
- [4] S.U.M. Khan, J. Akikusa, J. Phys. Chem. B 103 (1999) 7184; Int. J. Hyd. Ener. 27 (2002) 863.
- [5] S.A. Majumder, S.U.M. Khan, Int. J. Hyd. Ener. 19 (1994) 881.
- [6] S.U.M. Khan, Z.Y. Zhou, J. Electroanal. Chem. 357 (1993) 407.
- [7] C. Wehrli, Extraterrestrial Solar Spectrum, Physikalisch-Meterologisches Observatorium + World Radiation Center (PMO/WRC),1985.

Figure 1. Photocurrent density, $j_p (mA/cm^2)$, at an illumination intensity of 40 mW/cm² from a 150 Watt xenon arc lamp versus measured potential (E_{meas}) for n-Fe₂O₃ samples produced at an optimum total spray time of 60 sec having 10 sec spray periods at a substrate temperature of 415°C. Various indium dopant concentrations from 2 atomic % to 5 atomic % were used. The electrode potential at open circuit conditions was found to vary from -0.372 Volts/SCE at 2 atomic % dopant conc. The dark current for all samples started to appear only at +0.7 Volts/SCE to higher potential values, as evidenced by the lowering of photocurrent in the plot.