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The mechanism of quantum well intermixing (QWI) 
involves the creation of a non-equilibrium 
concentration of point defects which diffuse through 
the quantum well (QW) and adjacent barrier layers 
during a high temperature anneal treatment. This 
causes inter-diffusion and consequent change in the 
QW composition and thickness [1] leading to 
changes in the effective bandgap of the QWs which 
shows up as a blue-shift in the room temperature 
photoluminescence (PL). Then by spatially defining 
the areas of modified regions across a wafer, this 
QWI technique has been widely proposed as a 
method for implementing photonic integration [2]. 
This work reports on a comparison of the use of a 
low temperature grown epitaxial InGaP (LT-InGaP) 
or PECVD deposited SiO2 with rapid thermal 
annealing (RTA) for 60s at temperatures up to 900OC 
to induce QWI. Samples consisted of single QW 
structures in which the wells and barriers had either 
changes in the group III (InGaAs/GaAs) or group V 
(InGaAs/InGaAsP) compositions only. This allows 
us to separate out the defects migrating as group III 
or group V species. The results in fig.1 show that the 
LT-InGaP cap most strongly affects the InGaAs/ 
InGaAsP sample by inducing a larger bandgap blue-
shift, but there is a much reduced photoluminescence 
(PL) signal. This reduced intensity we ascribe to 
lateral composition modulation which is greatly 
increased by the RTA treatment, as shown in fig.2. 
For the InGaAs/GaAs samples the blue-shift after 
RTA is similar for both capping layers as seen in 
fig.3; also, the PL intensities remain strong for 
anneals up to 900OC. These results will be explained 
based on previous explanations for the SiO2 cap 
behaviour [1] and for the defects hypothesized to be 
present in LT-InGaP based on our previous work 
using LT-InP to induce QWI in InP-based QW 
structures [3]. 
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Figure 1. Peak PL wavelength after anneal for the 
variously capped  InGaAs/InGaAsP samples. 

 
 
 
 
 
 
 
 
 
 
 

  
 
 

(a) (b) 
Figure 2. Cross-sectional TEM for samples with InGaAs 
QW/ InGaAsP Barriers. (a) as-grown, and (b) after anneal 
at 925OC. 

 
 Figure 3. Peak PL wavelength after anneal for the 
variously capped  InGaAs/GaAs samples. 
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