Phase Evolution and Electrical Conductivity of Strontium-doped YMnO₃

Fu-Yun Shih, Kuan-Zong Fung and Tzu-KuangTseng Department of Materials Science and Engineering, National

Cheng Kung University, Tainan 7010, Taiwan SOFCs (solid oxide fuel cells) is a very efficient electrochemical device for electricity generation. Sr-doped LaMnO₃ is the state of art cathode material. However, La would react with yttria-stabilized zirconia (YSZ) electrolyte and formed La₂Zr₂O₇. YMnO₃ may be a potential cathode material since Y is already present in YSZ. But, YMnO₃ has a low electrical conductivity of 9.17*10⁻⁶ s/cm at 293 K. In order to enhance the conductivity of yttrium manganite, the substitution of alkaline-earth elements for Y ions is expected to create electron-hole defects, leading to the enhancement of the electrical conductivity. In this work, the phase evolution and conductivity in Sr-doped YMnO₃ was examined by XRD, SEM and conductivity measurement after sintering at 1400 °C for 6hr.

Fig. 1 shows the XRD patterns of the samples based on the formula of $Y_{1-x}Sr_xMnO_3$ where x is 10% increment in step. As seen in Fig. 1(a) and (k), all reflections for the sintered YMnO₃ and SrMnO₃ were indexed in hexagonal setting with the space group P63cm and P63/mmc, respectively. Their lattice parameter measured was a_R =6.137 °A, a_H = 11.372 °A for YMnO₃ and a_R =5.446 °A, $a_{H}\!\!=\!\!9.078\,^{\circ}\!A$ for SrMnO3. When the amount of Sr addition was less than 50 at.%, a two phase region consisting of YMnO3 and cubic perovskite was observed. After the Sr addition increased to $50 \sim 70\%$, a single phase perovskite structure was observed. Further addition of Sr resulted in the formation of deformed tetragonal perovskite. Fig. 2 shows the logarithm of the product of electrical conductivity and absolute temperature plotted as a function of the reciprocal temperature in the range from 300 to 900K. From this figure, it was observed that $Y_{0.3}Sr_{0.7}MnO_{3-\delta}$ in the system $Y_{1-x}Sr_xMnO_3$ has the highest conductivity of 91.87 S/cm at 900K. Thus, the electrical conductivity of YMnO₃ was significantly improved by the addition of Sr. Such an enhancement in conductivity may be expressed by the following defect reaction:

 $SrO+MnO+1/2O_2 \xrightarrow{\gamma_{MnO_3}} Sr_Y + Mn_{Mn}^x + 3O_o^x + h^{\Box}$ The

linear dependence of $\log(\sigma T)$ vs 1/T for the composition

studied can be attributed to the small polaron hopping by thermal activation.

Acknowledgement

This work is supported by National Science Council (NSC), Taiwan, under the grant No.NSC92-2120-M-006-003.

Fig. 1 XRD traces of $Y_{1-x}Sr_xMnO_3$ after sintered at 1400°C for 6 hr where x was 10% increment in step.(Si powder \bullet , YMnO₃ \blacktriangle , cubic perovskite \diamondsuit , tetragonal perovskite \ddagger , SrMnO₃ \blacklozenge , superlattice O).

Fig. 2 Arrhenius plot of conductivity of Sr-doped $YMnO_3$ doped with the amount of Sr ranging from 50 to 100 at.%.