Proton conductivity of (NH₄)_xK_{x-1}PO₃ electrolyte

Yoshio Shodai, Tomoko Tateishi, Kenta Onishi, Minoru Inaba, and Akimasa Tasaka

Department of Molecular Science and Technology, Faculty of Engineering, Doshisha University 1-3 Miyako-dani, Tadara, Kyotanabe, Kyoto 610-0321, Japan

Ammonium polyphosphate, NH₄PO₃, is known to have a high proton conductivity at about 300°C, especially in humidified gases (about 100 mS cm⁻¹ at 300°C), and is a promising electrolyte material for use in intermediate temperature fuel cells. Though as-prepared NH₄PO₃ does not show appreciable proton conductivity, thermal decomposition of NH₄PO₃ to HPO₃ increases the proton conductivity at temperatures higher than 200°C. However, the NH₄PO₃-HPO₃ mixture does not have enough thermal stability at 300°C; hence, it is used as a composite with matrix materials such as (NH₄)₂SiP₄O₁₃ and (NH₄)₂TiP₄O₁₃ to increase the thermal stability [1, 2, 3].

In the present study, the NH₄⁺ ion in NH₄PO₃ was partly substituted with a nonvolatile alkaline cation, K⁺, which has approximately the same ionic radius as that of NH₄⁺, to increase the thermal stability. The (NH₄)_xK_{1-x}PO₃ electrolytes were prepared, and their proton conductivity and thermal stability were measured. Furthermore, (NH₄)_xK_{1-x}PO₃ samples with low NH₄⁺ contents ($x \le 0.1$) were prepared to investigate the mechanism of proton conduction.

The $(NH_4)_x K_{1-x}PO_3$ electrolytes were characterized by ion chromatography (IC) X-ray diffraction (XRD), thermogravimetry (TG), and scanning electron microscopy (SEM). The contents of K⁺ and NH₄⁺ were determined by ion chromatography, and were 20-44% of expected *x* values for $(NH_4)_x K_{1-x}PO_3$. Figure 1 shows the XRD patterns of the $(NH_4)_x K_{1-x}PO_3$ electrolytes. The peaks at *ca.* 26° gradually shift to lower angles with an increase in the content of NH₄⁺ and this tendency indicates the formation of solid solutions $(NH_4)_x K_{1-x}PO_3$, in which the NH₄⁺ ion occupied part of the K⁺ sites in monoclinic KPO₃.

 $(NH_4)_{0.20}K_{0.80}PO_3$ electrolyte exhibited a high stability at 300°C and showed a high proton conductivity of 4.57×10^{-3} S cm⁻¹ in dry Ar. Even at 400°C, the electrolyte was stable, and its conductivity reached 8.04×10^{-3} S cm⁻¹.

The proton conductivity of (NH₄)_{0.05}K_{0.95}PO₃ electrolyte initially increased at 300°C in dry Ar as shown in Figure 2. But after reaching the maximum (1.14 \times 10^{-3} S cm⁻¹), it decreased gradually with an elapse of time. The results of thermogravimetry showed a 2.8% loss of the mass after being kept at 300°C for 100 h, which suggested that NH₃ (and other unknown components) were volatilized during heating. Figure 3 shows the SEM images of $(NH_4)_{0.05}K_{0.95}PO_3$ electrolyte (a) after heat-treated at 400°C for 12 hours in NH₃ atmosphere, (b) after hold at 300°C for 24 hours in dry Ar, and (c) after hold at 300°C over 100 hours in dry Ar. It was revealed that the electrolyte separated into two phases; crystalline KPO3 and an amorphous phase (HPO3) when heated at 300°C. The former acted as a matrix, and the latter worked as a proton conductor. On the other hand, the amorphous phase almost disappeared after heating at 300°C for more than 100 h. This was due to vaporization of the amorphous phase, which results in the gradual decrease in proton conductivity.

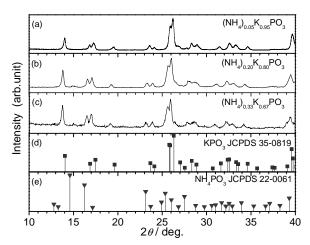


Figure 1 XRD patterns of (a) $(NH_4)_{0.05}K_{0.95}PO_3$, (b) $(NH_4)_{0.20}K_{0.80}PO_3$, (C) $(NH_4)_{0.33}K_{0.67}PO_3$, (d) KPO₃ (JCPDS 35-0819), and (e) NH₄PO₃ (JCPDS 22-0061).

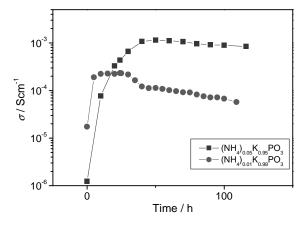


Figure 2 Time dependence of proton conductivity for $(NH_4)_x K_{x-1}PO_3$ electrolyte at 300°C in dry Ar (50 ml min⁻¹).

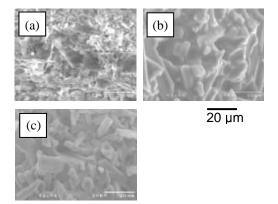
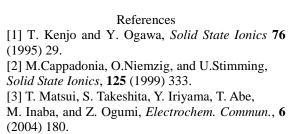



Figure 3 SEM images of $(NH_4)_{0.05}K_{0.95}PO_3$ electrolyte (a) after heat-treated at 400°C for 12 hours in NH₃ atmosphere, (b) after hold at 300°C for 24 hours in dry Ar, and (c) after hold at 300°C over 100 hours in dry Ar.

