HIGH TEMPERATURE STUDY OF VAPORIZATION PROCESSES AND THERMODYNAMIC PROPERTIES OF K₂O-GeO₂ MELTS

S.I. Shornikov

Center of Isotopic Research, Karpinsky All-Russian Geological Institute (VSEGEI) Sredny pr., 74, 199106, Saint-Petersburg, Russia e-mail: sergey_shornikov@vsegei.ru

The vaporization processes of K_2O -GeO₂ melts from molybdenum and platinum effusion cells in the temperature range 630-1540 K were studied using MI 1201 commercial mass spectrometer provided with the ion source modified for high temperature measurements (1).

The $(K)^+$, $(GeO)^+$, $(KO)^+$, $(O_2)^+$, and $(Ge)^+$ ions were detected in the mass spectra of vapor over the K₂O-GeO₂ melts at temperatures studied at ionizing energy 20 eV. The special search showed the absence of associated forms corresponding to the $(K_iGe_jO_k)^+$ ions. The obtained data showed that the main processes of the K₂O-GeO₂ melt evaporation are the same as in the case of K₂O and GeO₂ and may be described by the following reactions

$$[K_2O] = 2(K) + \frac{1}{2}(O_2)$$
[1]
[GeO_2] = (GeO) + \frac{1}{2}(O_2) [2]

(the square and round brackets denote the components of the condensed and gas phases, respectively).

The K₂O and GeO₂ activities (a(i)) and the Gibbs energies of melt formation ($\Delta_f G_T$) were calculated using the values of partial pressures of vapor species over studied melts determined by the Hertz-Knudsen equation and the equilibrium constant data (2) for the reactions [1, 2].

The results of the present study were considered in the comparison with the same data on similar alkali-glass Na_2O -SiO₂ (3), Na_2O -GeO₂ (4) and K_2O -SiO₂ (5) melts in order to interpret the nature of alkali-germanate melts.

At the present study a special attention was devoted to the choice of the reliable thermodynamic data on the Na_2O-SiO_2 , Na_2O-GeO_2 and K_2O-SiO_2 melts.

The determined thermodynamic properties of the K_2O -GeO₂ melts clarified the significant negative deviations from the ideality, which is typical for the other alkali-glass melts (Figures). The values of deviations increase in the following order: Na₂O-SiO₂ \rightarrow Na₂O-GeO₂ \rightarrow K₂O-SiO₂ \rightarrow K₂O-GeO₂. The same increase is observed for the consideration of negative deviations in the orders: silicate \rightarrow germanate melts and Na₂O-(SiO₂, GeO₂) \rightarrow K₂O-(SiO₂, GeO₂) melts.

REFERENCES

- 1. Shornikov S.I., Archakov I.Yu. and Chemekova T.Yu., Russ. J. Phys. Chem. **74**, 677 (2000).
- 2. Gurvich L.V., Veitz I.V., Medvedev V.A. et al., Thermodynamic Properties of the Individual Substances, V.P. Glushko, Editor, Nauka, Moscow (1982).
- 3. Zaitsev A.I., Shelkova N.E., Lyakishev N.P., Mogutnov B.M., PCCP, 1, 1899 (1999).
- 4. Kohsaka S., Sato S., Yokokawa T., J. Chem. Thermodyn., 10, 117 (1978).
- Kozhina E.L., Glass Physics & Chemistry, 16, 679 (1990).

Figures. The oxide activities (a, b) and the Gibbs energies (c) of alkali-glass melt formation $(1 - Na_2O-SiO_2, 2 - Na_2O-GeO_2, 3 - K_2O-SiO_2 and 4 - K_2O-GeO_2)$ determined by mass spectrometric Knudsen effusion techniques (1 - at 1473 K (3) and 4 - at 1300 K at the present study) and by e. m. f. techniques (2 - at 1450 K (4) and 3 - at 1300 K (5)).