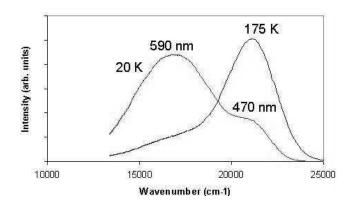
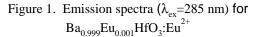
Nature of Eu^{2+} and Ce^{3+} emission in the perovskite BaHfO₃


H.A. Comanzo¹, A.A. Setlur¹, A.M. Srivastava¹, B. Wen², U. Happek² ¹ GE Global Research 1 Research Circle Niskayuna, NY 12309 ² Department of Physics and Astronomy University of Georgia Athens, GA 30605


The emission behavior of BaHfO3:Eu2+ previously has been shown to have a peculiar temperature dependence with red emission at low temperatures which blue shifts as the temperature is raised [1] (Figure 1). It has been proposed that this red emission could be due to a metalmetal charge transfer state between Eu^{2+} and Hf^{4+} [1], similar to $BaF_2:Eu^{2+}$, and the blue emission could be due to intrinsic Eu^{2+} emission [2]. Typically, host lattices containing d⁰ transition metal ions such as Hf⁴⁺ will leads to strong quenching of emission from the lowest $4f^{6}5d$ levels of Eu^{2+} . In this paper, we compare the luminescence of BaHfO₃: Eu^{2+} with BaHfO₃: Ce^{3+} and (Sr,Ca)HfO₃:Eu²⁺ to understand the nature of the luminescence bands in BaHfO₃. These comparisons lead to the conclusion that the blue luminescence band is most likely due to intrinsic Eu^{2+} emission. The nature of the redder emission bands will be analyzed through timeresolved measurements and thermoluminescence excitation spectroscopy. Finally, in (Sr,Ca)HfO₃:Eu²⁺, we believe that the emission bands in these materials are clear evidence of Eu²⁺ luminescence in a host lattice containing transition metal d⁰ ions.

References:

[1] W.J. Schipper, J.J. Piet, H.J. de Jager, and G. Blasse, Mater. Res. Bull. **29**, 23 (1994).

[2] P. Dorenbos, J. Phys. Cond. Matt. 15, 2645 (2003).

