Does the $Pr^{3+1}S_0$ level transfer energy to Gd^{3+} IN $SrAl_{12}O_{19}$: Pr^{3+} ?

Marc Hannah¹,U. Happek¹, H.A. Comanzo², A.A. Setlur², A.M. Srivastava²

¹Department of Physics and Astronomy University of Georgia Athens, GA 30602 ²GE Global Research 1 Research Circle Niskayuna, NY 12309

We are revisiting the mechanism for the energy transfer between Pr^{3+} and Gd^{3+} in $SrAl_{12}O_{19}$: Pr^{3+} (SAP). While the energy transfer between these ions is quite efficient in SAP, it has been puzzling why the energy transfer between Pr^{3+} and other acceptor ions, like Mn, has not been measured [1,2]. Moreover, we find experimental evidence that the decay rate of the Pr^{3+} in SAP ${}^{1}S_{0}$ level is not affected by co-doping the material with Gd^{3+} , although the energy transfer is generally believed to originate form the ${}^{1}S_{0}$ level of Pr^{3+} . Here we investigate role of 5d states of Pr^{3+} in the energy transfer process to Gd, with implications for energy transfer to other acceptor ions and the quantum efficiency of SAP in general.

This work is in part supported by the U.S. Department of Energy through contract# DE-FC2603NT1945.

1. U. Happek, unpublished data.

2. A. Meijerink, private communication