Nature of the Eu^{2+} emission in the UV LED phosphor Sr_2SiO_4 : Eu^{2+}

H.A. Comanzo¹, A.A. Setlur¹, A.M. Srivastava¹, P. Schmidt², Bo Wen² and U. Happek² ¹ GE Global Research 1 Research Circle Niskayuna, NY 12309 ² Department of Physics and Astronomy University of Georgia Athens, GA 30605

The optical properties of the yellow-red emitting UV LED phosphor (405 nm), $Sr_2SiO_4:Eu^{2+}$ has been investigated in the temperature range of 10 K- 300 K. Two different Eu^{2+} centers are observed in accordance with the crystal structure. From the low temperature excitation and emission spectrum, a Stokes shift of 4025 cm⁻¹ for the Eu_B center is derived. At room temperature, the FWHM of the emission band is 3166 cm⁻¹. Experiments were conducted to determine if photoionization [1] was responsible for the observed Eu^{2+} luminescence in Sr_2SiO_4 . We find no evidence for photoionization for wavelengths greater than 350 nm (Eu_B). For shorter wavelengths we do find a signal in the Thermally Stimulated Luminescence Excitation Spectroscopy (TSLES) [2] that is indicative of photoionization.

P. Dorenbos, J. Phys. Cond. Matt. 15, 2645 (2003).
J. Fleniken, J. Wang, J. Grimm, M. J. Weber and U. Happek, J. Lumin., 94-95 (2001) 465