ELECTROLUMINESCENCE FROM SILICON TUNNEL DIODES INCORPORATING HIGH-κ DIELECTRICS

J.G. Mihaychuk, M.W. Denhoff, M. Lee, J. Lapointe, S.P. McAlister, W.R. McKinnon, and D. Landheer, National Research Council Canada Institute for Microstructural Sciences Ottawa, Ontario, Canada K1A 0R6

Light emission from crystalline silicon is not strictly limited to the phonon-assisted radiative recombination at the 1.1 eV indirect band gap. Hot-carrier luminescence can produce light emission with a broad spectrum through direct, indirect, intra-band or band-to-band. radiative transitions.

Here we report on visible and near-infrared electroluminescence (EL) spectra and images obtained from metal-insulator-semiconductor (MIS) tunnel diodes during electron injection into crystalline Si. In addition to potential applications in silicon optoelectronics, such measurements also suggest a simple method to visualize current leakage in the gate dielectric of MOSFETs with ultra-thin gate dielectrics.

The MIS devices employed an indium-tin-oxide transparent top electrode. Tunnel barriers were formed by thermal oxidation to form SiO₂, oxidation of Al layers formed by thermal evaporation, reactive sputtering of Al_2O_3 , or by metallorganic chemical vapor deposition of HfO_2 layers by liquid injection using tetrakis(diethylamido) hafnium and NO. Interfacial layers under the tunnel barriers were formed by thermal oxidation of the p-type Si(100) substrates or by inadvertent oxidation during the ITO or Al_2O_3 deposition.

Capacitance–voltage characteristics of a HfO₂/SiO₂/Si capacitor with an area of 2.8×10^{-3} cm² are shown in Fig. 1. From the capacitance in accumulation the equivalent oxide thickness is 4.9 nm, comprising a 4.5 nm thick HfO₂ layer (estimated by ellipsometry during deposition) on a 4.2 nm SiO₂ layer formed at the interface during air exposure and ITO deposition.

In addition to EL at the Si band edge, we measure EL with low- and high-energy tails extending from 0.7 eV to 2.3 eV (1700 nm to 550 nm), as shown in Fig. 2. Within a mesa with ~100- μ m diameter, the visible portion of the light emission appears to originate at multiple isolated sites, each less than 1 μ m in size, as shown in Fig. 3.

We associate the EL sites with current concentration at thin or defective regions in the tunnel barrier. Similar isolated EL sites appear during forward-bias stress of devices using (1) Al-oxide over an interfacial SiO₂ layer, or (2) evaporated SiO₂ over thin thermal Si oxide. We have also used electron beam lithography to pattern thin tunnel regions that act as sites for EL in a ~18-nm thick SiO₂ layer, as shown in Fig. 4.

The origin and mechanism responsible for the luminescence will be discussed.

Fig. 1. Capacitance *vs.* potential at 10 kHz (---) and 100 kHz (---) for Hf oxide tunnel barrier with ITO gate.

Fig. 2. EL spectrum of Si tunnel diode with Hf oxide tunnel barrier forward biased to 7 V and 90 mA.

Fig. 3. CCD image of EL from a device with a Hf oxide tunnel barrier.

Fig. 4. CCD image of EL from a device with a SiO_2 barrier layer having 5 parallel 1-µm-wide tunnel regions patterned by electron beam lithography.