A Thermodynamic Database for AlCl₃-based Molten Salt Systems

C. Robelin, P. Chartrand and A.D. Pelton

Centre for Research in Computational Thermochemistry École Polytechnique Montréal (Québec), Canada, H3C 3A7

Chloroaluminate melts can be used as electrolytes for the production of aluminum and they are also involved in high energy density batteries ("Zebra" battery) : Na/ β -Al₂O₃/NaAlCl₄, FeCl₂, Fe. Molten chlorides have many other industrial applications. For example, transitionmetal chlorides are involved in the hot corrosion of metallic alloys. They are also used in the production of magnesium by electrolysis : the electrolyte is NaCl-KCl-MgCl₂-CaCl₂ and the transition-metal chlorides (mostly MnCl₂ and FeCl₂) are dissolved impurities.

A thermodynamic database has been developed for the LiCl-NaCl-KCl-MgCl₂-CaCl₂-MnCl₂-FeCl₂-FeCl₃-CoCl₂-NiCl₂-AlCl₃ system. All binary subsystems (except AlCl₃-FeCl₃) as well as all higher order (mostly ternary) subsystems for which experimental data were available have been considered. A complete critical evaluation of all available phase diagram and thermodynamic data (enthalpy of mixing, emf and vapor pressure measurements) has been performed for all condensed phases (liquid, solid solutions, stoichiometric compounds) and relevant gaseous species, and optimized model parameters have been found which best reproduce all the data simultaneously. In this way the data have been rendered self-consistent, discrepancies among the data have been identified, and extrapolations and interpolations have been performed. The models can be used with Gibbs free energy minimization software to calculate phase diagram sections, vapor pressures, and all thermodynamic properties at all compositions over extended ranges of temperature and pressure.

The thermodynamic optimizations of the LiCl-NaCl- $KCl-MgCl_2-CaCl_2 \quad [1] \quad and \quad NaCl-KCl-MgCl_2-CaCl_2-$ MnCl₂-FeCl₂-CoCl₂-NiCl₂ [2a,2b] systems have been published. The liquid solution was modeled using the Modified Quasichemical Model [3,4] which takes into account short-range ordering between second-nearestneighbor cations. All relevant solid solutions were modeled using appropriate models. In particular, the MgCl₂-MnCl₂-FeCl₂-CoCl₂-NiCl₂ solid solution [2a,2b] was modeled using a cationic substitutional model with an ideal entropy and an excess Gibbs free energy expressed as a polynomial in the component mole fractions. The (Li,Na,K)(Mg,Ca,Mn,Fe,Co,Ni)Cl₃ and the $(Li,Na,K)_2(Mg,Mn,Fe,Co,Ni)Cl_4 \ \ solid \ \ solutions \ \ were$ modeled using the Compound Energy Formalism [5].

Recently, the thermodynamic database for the LiCl-NaCl-KCl-MgCl_2-CaCl_2-MnCl_2-FeCl_2-CoCl_2-NiCl_2

system was extended with the addition of AlCl₃, and the thermodynamic optimization of the NaCl-KCl-AlCl₃ system was published [2c]. The binary systems ACl-AlCl₃ (where A = Li, Na and K) show strong negative deviations from ideality at the equimolar composition (due to short-range ordering in the liquid phase), and the binary mixtures exhibit a region of liquid-liquid immiscibility at high AlCl₃ content. This is illustrated for the NaCl-AlCl₃ system in Figure 1, where the calculated phase diagram is compared with the available experimental data. The existence in ACl-AlCl₃ melts of the AlCl₄ and Al₂Cl₇

species has been observed by Raman spectroscopy [6,7]. In order to introduce two different compositions of maximum short-range-ordering near the $AAlCl_4$ and AAl_2Cl_7 compositions, pure liquid aluminum chloride was modeled as a mixture of $AlCl_3$ and Al_2Cl_6 (with paired aluminum cations). Similarly, the $AlCl_3-MCl_2$ systems (where M = Mg, Mn, Fe, Co and Ni) were modeled by introducing two different compositions of maximum short-range-ordering near the $M(AlCl_4)_2$ and $M(Al_2Cl_7)_2$ compositions. Satisfactory results were obtained in multi-component systems. This is illustrated in Figure 2, where the calculated section of the NaCl-KCl-MgCl_2-AlCl_3 phase diagram at constant weight ratio NaCl/KCl/MgCl_2 = 74.0/19.3/6.7 is compared with the available experimental data.

References

1. P. Chartrand and A.D. Pelton, *Metall. Mater. Trans.*, 2001, vol. 32A, pp. 1361-83.

2(a,b,c). C. Robelin, P. Chartrand and A.D. Pelton, J. Chem. Thermodyn. (in press).

3. A.D. Pelton, S.A. Degterov, G. Eriksson, C. Robelin and Y. Dessureault, *Metall. Mater. Trans.*, 2000, vol. 31B, pp. 651-9.

4. A.D. Pelton and P. Chartrand, *Metall. Mater. Trans.*, 2001, vol. 32A, pp. 1355-60.

5. B. Sundman and J. Ågren, J. Phys. Chem. Solid, 1981, vol. 42, pp. 297-301.

6. S.J. Cyvin, P. Klaeboe, E. Rytter and H.A. Øye, J. Chem. Phys., 1970, vol. 52, pp. 2776-8.

7. H.A. Øye, E. Rytter, P. Klaeboe and S.J. Cyvin, Acta Chem. Scand., 1971, vol. 25, pp. 559-76.

<u>Figure 1</u> : Calculated NaCl-AlCl₃ phase diagram at 1 bar (dotted lines are liquid-liquid miscibility gap boundary and monotectic at P > 1 bar).

Mole fraction of the NaCl-KCl-MgCl₂ ternary mixture <u>Figure 2</u> : Calculated section of the NaCl-KCl-MgCl₂-AlCl₃ phase diagram at constant weight ratio NaCl/KCl/MgCl₂ = 74.0/19.3/6.7 [A = (Na,K)MgCl₃(ss) and B = (Na,K)₂MgCl₄(ss)].