High-Energy Synchrotron X-Ray Diffraction Study of High-Temperature Levitated Liquids at SPring-8

S. Kohara,^a M. Takata,^a A. Mizuno,^b M. Watanabe^b

 ^a Japan Synchrotron Radiation Research Institute Kouto, Mikazuki-cho, Sayo-gun, Hyogo 679-5198, Japan
 ^b 2Department of Physics, Gakushuin University 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan

Containerless techniques allow us to study the structure of liquids at high-temperature, because they can avoid two distinct problems: (i) container interactions and contamination, and (ii) the effects of the container walls on the structural measurements. Recently a combination of containerless methods and synchrotron x-ray diffraction technique has been an essential tool to study the structure of liquids at high-temperature or supercooled liquids [1]. However most of diffraction experiments have been carried out using a reflection geometry with low energy x-rays, which makes it difficult to obtain reliable data. High-energy x-rays from synchrotron radiation source provide several advantages; high resolution in real space due to the wide range of scattering vector Q (= $(4 \square \sin \square, 2 \square$: scattering angle, \square : wavelength of photons), smaller correction terms (especially for absorption correction), reduction of truncation errors. Furthermore a combination of high-energy x-ray diffraction and neutron diffraction is one of the powerful tools to study short- and intermediate-range structure of disordered materials [2-4]. In this study, we tried to carry out diffraction experiment using a combination of conical nozzle levitation and high-energy synchrotron x-rays to obtain reliable diffraction data of amorphous silica at high-temperature.

The conical nozzle levitation system, integrated with a two-axis diffractometer designed for disordered materials [5] at SPring-8 high-energy synchrotron x-ray diffraction beamline BL04B2 [6] is schematically illustrated in Fig. 1. The specimen is levitated by Ar gas, and heated by CO_2 laser. The scattered x-rays are detected by a Ge solid state detector with a horizontal scattering plane. The high-energy x-ray diffraction experiments were carried out at 113.26 keV photon energy. The collected data were provided absorption, background, absorption, and Compton scattering correction and then normalized to Faber-Ziman total structure factor S(Q).

Fourier transformations of the S(Q) data lead to the realspace, total correlation functions, T(r), of amorphous silica (T_s =1180 °C) at 26 °C and 1330 °C are shown in Fig. 2. The first significant change in the correlation function involves the Si-O correlation at 1.61 Å, which moves to higher r and decreases intensity with increasing temperature, indicating an increase in the Si-O thermalvibration. The O-O correlation at 2.62 Å also decreases in intensity with increasing temperature. The position of the O-O correlation in the neutron data is almost the same with increasing temperature [7]. The position of the Si-Si correlation at 1330°C shifts slightly to higher r and decreases intensity. However, it is remarkable that the decrease of the Si-Si correlation is more moderate than for the Si-O and O-O correlations, indicating that the 6fold rings produced by SiO₄ tetrahedra are stable even at high-temperature.

References

[1] S. Krishnan and D. L. Price, *J. Phys.: Condens. Matter.*, **12**, R145 (2000).

- [2] S. Kohara and K. Suzuya, Nucl. Instr. and Meth. B, 199, 23 (2003).
- [3] T. Uchino, A. Aboshi, S. Kohara, Y. Ohishi, M. Sakashita, and K. Aoki, *Phys. Rev. B*, **69**, 155409 (2004).

[4] S. Kohara, K. Suzuya, K. Takeuchi, C.-K. Loong, M. Grimsditch, J. K. R. Weber, J. A. Tangeman, and T. S. Key, *Science*, **303**, 1649 (2004).

[5] S. Kohara, K. Suzuya, Y. Kashihara, N. Matsumoto, N. Umesaki, and I. Sakai, *Nucl. Instr. and Meth. A*, **467-468**, 1030 (2001).

[6] M. Isshiki, Y. Ohishi, S. Goto, K. Takeshita, and T. Ishikawa, *Nucl. Instr. and Meth.*, A467-468, 663 (2001).
[7] S. Susman, K. J. Volin, D. G. Montague, and D. L.

Price, *Phys. Rev B*, **43**, 11076 (1991).

Top view

End view

Fig. 1 Schematic diagram of apparatus used for highenergy synchrotron x-ray diffraction measurements.

Fig. 2 The total correlation functions, T(r), of amorphous SiO₂. Solid line: 26 °C, dashed line: 1330 °C ± 30 °C.