Novel Hydrophobic Molten Salts Based on Tetrakis[3,5-bis(trifluoromethyl)phenyl]borate Anion for Electrochemistry of the Molten Salt|Water Interface

Seiichi Imakura, Naoya Nishi, Masahiro Yamamoto, and Takashi Kakiuchi

Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan

Room-temperature molten salts (RTMSs) that form a polarized RTMS|W interface, so far proposed, are such composed of hydrophobic cations, as tetraalkylammonium ions, and the hydrophobic anions, such as PF6 or bis(perfluoroalkylsulfonyl)imide anion $(C_n C_n N)$. To extend the polarized potential window so that the transfer of more hydrophobic cations or of more hydrophobic anion from W to RTMS. RTMSs composed of more hydrophobic anions are required. In this study, we will show that the potential window can be extended using the hydrophobic anion, tetrakis[3.5hv bis(trifluoromethyl)phenyl]borate (TFPB).

The cations used are 1-alkyl-3-methylimidazolium (C_nmim⁺, n=2, 4, 5, 6, 7, 8, 10, 12), 1-dodecylpyridinium (C₁₂Py⁺), tri-n-octylmethylammonium (TOMA⁺), and 2octade cylisoquinolinium (C $_{18}$ Iq⁺). The electrochemical voltammetric measurements of the RTMS|W interfaces were made by using capillary electrodes. The electrochemical cell is represented by

Ag /AgCl $\left| 0.1 \text{ M Li}_2 SO_4 \right|$ CA $\left| 0.1 \text{ M LiCl} \right|$ Ag/AgCl x M CCl W2 W1

RTMS

where $\boldsymbol{C}^{\scriptscriptstyle +}$ and $\boldsymbol{A}^{\scriptscriptstyle -}$ denote the cation and anion comprising RTMS. The potential of the right-hand side terminal with respect to the left will be referred to as E.

The melting points of the TFPB-based molten salts are shown in Table. 1. All Cnmim TFPB used and C12PyTFPB show melting points higher than room temperature. TOMATFPB and C₁₈IqTFPB are found to be liquid at room temperature. The potential window of the RTMS|W interfaces are estimated by using cyclic voltammetry. The width of the potential window of TOMATFPB|W and $C_{18}IqTFPB|W$ interfaces were measured to be 150 mV and 300 mV respectively. Compared with our previous results of the potential window of $C_{18}IqC_2C_2N|W$ interface 250 mV, the potential window was 50 mV extended by using TFPB anion.

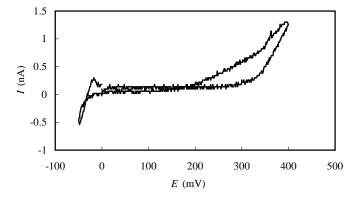


Fig 1. Cyclic voltammogram for the ion transfer across $C_{18}IqC_2C_2N|W$ interface at 56 $^\circ\!C$. Scan rate: 50 mV/sec.

Table 1.	Melting points
of TFPB-	based molten salts

Cation	m.p. /°C
$C_2 mim^+$	134.0
$C_4 mim^+$	104.0
$C_5 mim^+$	82.0
$C_6 mim^+$	82.0
$C_7 mim^+$	69.0
$C_8 mim^+$	75.5
$C_{10}mim^+$	85.5
$C_{12}mim^+$	72.0
$C_{12}Py^+$	64.0
TOMA ⁺	< 30
$C_{18}Iq^+$	< 25