Anodic Behavior Of Each Component In A Few Nickel-Metal Composites And Effect Of Added Metal In Composites On Electrolytic Production Of NF₃

Sojiro Kon, Atsuhisa Mimoto, Tsuyoshi Maeda, Minoru Inaba, and Akimasa Tasaka

Department of Applied Chemistry, Graduated School of Engineering, Doshisha University 1-3 Miyako-dani, Tadara, Kyotanabe, Kyoto 610-0321, Japan

Nitrogen trifluoride (NF₃) is mainly used as a cleaner gas and etchant in semiconductor and electronics industries. Pure NF3 free from CF4 can be obtained by electrolysis of NH₄F·2HF melt with nickel anode. However, anode consumption, which corresponds to the current loss of 3-5%, is a problem¹⁾ to be solved. Also, cobalt and silver fluorides are usually used as a fluorination agent for organic compounds. Hence, the anodic behavior of Co and Ag was studied in a dehydrated melt of NH₄F·2HF, and the Ni-Co and the Ni-Ag composites were employed for the anode in electrolysis of $NH_4F{\cdot}2HF$ in order to investigate the effects of each component in the nickel based composites on the current efficiency for NF₃ formation and the anode consumption.

Fig. 1 shows the anodic polarization curves of the Co electrode. Two peaks due to anodic dissolution were observed at ca. -0.1 and 0.3 V on the 3rd and the 40th runs. These peaks correspond to Reactions (1) and (2), respectively.

$$\operatorname{Co} + 2\operatorname{HF} \stackrel{\leftarrow}{\Rightarrow} \operatorname{CoF}_2 + \operatorname{H}_2 \qquad E^0 = -0.345 \, \mathrm{V} \quad vs. \quad \operatorname{H}_2$$

Co + 3HF
$$\leftrightarrows$$
 CoF₃ + 3/2H₂ $E^0 = 0.40$ V vs. H₂
(2)

Fig. 2 shows the curves for the Ag electrode. Two anodic dissolution peaks were also observed at ca. 1.2 and 1.5 V on the 1st run. These peaks correspond to Reactions (3) and (4), respectively.

$$\begin{array}{rcl} \operatorname{Ag} + \operatorname{HF} &\leftrightarrows \operatorname{AgF} + 1/2\operatorname{H}_2 & E^0 = & 0.884 \ \mathrm{V} & vs. & \operatorname{H}_2 \\ & (3) \end{array}$$

$$Ag + 2HF \stackrel{\leftarrow}{\rightarrow} AgF_2 + H_2 \qquad E^0 = ? V vs. H_2$$
(4)

These results revealed that Co and Ag electrodes were covered with a passive film in a molten $\rm \bar{N}H_4F{\cdot}2HF$ during electrolysis.

The mixture of metal (Co or Ag) and Ni powders were sintered at 1000°C under 196 MPa for 2 hours by Hot Isostatic Pressing (HIP). The ratios of metal in the mixture were 5 and 10 mol%. In electrolysis of NH_4F ·2HF at 50 mA cm⁻² for 120 hours with the Ni anodes such as the Ni sheet and the HIPed Ni, and the Ni-metal composite anodes, the current efficiencies for the constituents in the anode gas and the current loss caused by anodic dissolution (Q_a/Q_t) are shown in Table 1. The current efficiencies for NF₃ formation on the Ni-Co and the Ni-Ag composite anodes were small compared with those on the Ni anodes. The current efficiencies for NF₃ formation were decreased with increasing the contents of metal in the nickel based composite anodes. Also, the current loss caused by anodic dissolution (Q_a/Q_t) on the Ni-Co and the Ni-Ag composites were large compared with those of the Ni anodes. Addition of Co or Ag in the nickel based composite anodes may promote the anodic dissolution. Fig. 3 shows XRD patterns of the Ni-Co and Ni-Ag composite electrodes after electrolysis. The film formed on the Ni-Co was composed of NiF2 and CoF₂. Also, composition of the film on the Ni-Ag anode was NiF_2 and AgF. Since these metal fluorides are expected to be highly oxidized species such as NiF₃, CoF₃ and AgF2 during lectrolysis, it is considered that the fluorination ability of CoF₃ and AgF₂ may be small compared with that of NiF_3 . In fact, the current efficiency for NF3 formation on each Ni-metal composite anode was smaller than those of the Ni anodes.

From these results, it is concluded that a nickel electrode containing a lower concentration of impurities such as Co and Ag is more favorable as the anode material for electrolytic production of NF₃.

Material		Current efficiency of anode gas / %							$(Q_{a}/Q_{t}) / \%$
iviater la l		N_2	O ₂	NF ₃	N_2F_2	N_2F_4	N_2O	Overall	
Ni sheet	120h	19.18	6.02	62.84	1.45	3.03	2.23	94.76	3.54
HIPed Ni	120h	14.96	7.71	60.80	1.83	2.92	3.69	91.91	2.18
Ni-5mol% Co	120h	23.74	8.52	41.81	5.96	1.73	3.62	85.39	7.95
Ni-10mol% Co	120h	22.08	8.35	37.60	7.53	3.32	4.21	83.09	4.42
Ni-5mol% Ag	120h	21.16	8.00	51.71	2.62	1.19	2.14	86.82	5.60
Ni-10mol% Ag	120h	20.40	7.72	46.77	4.36	3.44	2.52	85.21	6.30

Reference 1) A. Tasaka, T. Ohashi, N. Muramatsu, Y. Nakagawa, and S. Sugimoto, Electrochim. Acta, 45 (2000) 3993.