Development Of Anode For Electrolysis Of (CH₃)₄NF·4HF Room-Temperature Molten Fluoride

Kazuki Onoda, Yoshio Shodai, Minoru Inaba, and Akimasa Tasaka

Department of Applied Chemistry, Graduated School of Engineering, Doshisha University 1-3 Miyako-dani, Tadara, Kyotanabe, Kyoto 610-0321, Japan

A room-temperature molten fluoride, (CH₃)₄NF·*m*HF melt $(3.5 \le m \le 5.0)$, is expected to be a useful electrolyte for electrochemical fluorination [1]. $(CF_3)_3N$ can be synthesized by electrochemical perfluorination of (CH₃)₄N⁺ cation in the melt, and hence it will be a new process that can replace the Simons process, in which trimethylamine, (CH₃)₃N, dissolved in anhydrous HF is electrolyzed using the Ni anode [2, 3, 4]. However, a previous study revealed that the Ni anode is unfavorable in electrolysis for a long time in the (CH₃)₄NF⁴HF only melt, because an insulating film mainly composed of NiF2 is formed on the anode during electrolysis [5]. To develop a new electrolytic process using the $(CH_3)_4NF \cdot mHF$ melt in an industrial scale, it is important to improve the Ni sheet anode as that covered with the film having a higher electric conductivity and a lower overvoltage for the fluoride ion discharge reaction.

It has been reported that the nickel based composite containing nickel oxide with the plural oxidation states gave a high electronic conductivity to the film and decreased the anode overvoltage in the (CH₃)₄NF·mHF melt [6]. LiNiO₂ and LaNiO₃ are considered to be useful film materials that are stable in the $(CH_3)_4NF \cdot mHF$ melt. The LiNiO₂ and the LaNiO₃ coated Ni sheet anodes were prepared by a sol-gel coating method. The sol solution was prepared from La(CH₃COO)₃·1.5H₂O), *i*-C₃H₇OLi (or polyvinlylpyrrolidone (PVP, Mw = 55000), CH₃COOH, and i-C₃H₇OH. The sol solution was dip-coated on a Ni sheet, and was converted to a gel film by heating at 200°C for 20 minutes. Dip-coating and heat-treatment at 200°C were alternately performed with several times. After all coating processes, the gel film was heat-treated at 700 or 750°C for 2 hours in air. Fig. 1 shows the X-ray diffraction patterns of the samples. The XRD analysis revealed that LiNiO2 and LaNiO3 formed on the Ni substrate with oxides such as NiO and/or La2O3.

Fig. 2 shows the variations of the potential of the Ni sheet anode, the LiNiO₂ coated Ni sheet anode, and the LaNiO₃ coated Ni sheet anode with lapse of time during electrolysis at 20 mA cm⁻² in the (CH₃)₄NF·4HF melt. The potential on Ni anode rose up to 10 V for only 1 hour, whereas those on the LiNiO₂ and the LaNiO₃ coated Ni sheet anodes were kept at 6.54 and 5.04 V for 100 hours, respectively. These results indicate that LiNiO₂ and LaNiO₃ may give the electric conductivity to the Ni sheet anode during electrolysis.

The compositions of the evolved gas at the LiNiO₂ and LaNiO₃ coated Ni sheet anodes electrolyzed at 20 mA cm⁻² for 100 hours in the $(CH_3)_4NF\cdot 4HF$ melt are shown in Table 1. The anode gas was composed of CF₄, NF₃, C₂F₆, CHF₃, C₂HF₅, (CF₃)₃N, (CF₂H)₂NCF₃, and (CF₃)₂NCF₂H. The main constituents in the anode gas were CF₄ and (CF₃)₃N. The maximum ratio of (CF₃)₃N obtained was 25.4% when electrolysis using the sol-gel LiNiO₂ coated Ni sheet anode prepared by the procedure of dip-coating with five times was carried out at 20 mA cm⁻² in the (CH₃)₄NF·4HF melt for 100 hours.

These results suggest that the electrolytic production of $(CF_3)_3N$ from $(CH_3)_4NF\cdot 4HF$ melt using the LiNiO₂ and

 $LaNiO_3$ coated Ni sheet anodes is a useful process because the electrolytic conductivity of these oxide films on the anode is kept higher during electrolysis.

Fig.1 X-ray diffraction patterns of (a) the sol-gel LiNiO₂ coated Ni sheet and (b) the sol-gel LaNiO₃ coated Ni sheet prepared by the procedure of dip-coating with five times. (\bigcirc) LiNiO₂, (\bigoplus) Li₂CO₃, (\triangle) LaNiO₃, (\blacktriangle) La₂O₃, (\square) Ni, and (\blacksquare) NiO.

The sol-gel LiNiO₂ coated Ni sheet anode prepared by the procedure of dip-coating with five times, and (c) the sol-gel LaNiO₃ coated Ni sheet prepared by the procedure of dip-coating with five times during electrolysis at 20 mA cm⁻² in the (CH₃)₄NF-4HF melt at room temperature.

Table 1 The compositions of the anode gas electrolyzed at 20 mA cm⁻² for 100 h in the $(CH_3)_4NF$ ·4HF melt at room temperature.

Material (Number of times of the dip coating process)	the composition of evolved gas / $\%$						
	CF_4	NF_3	C_2F_6	CHF ₃	C_2HF_5	Р	(CF ₃) ₃ N
Sol-gel LiNiO2 coated Ni sheet							
three times	53.9	2.0	5.5	7.3	1.5	8.0	21.8
five times	57.1	3.1	0.6	5.8	6.8	1.2	25.4
Sol-gel LaNiO3 coated Ni sheet							
three times	70.1	4.2	5.6	1.8	8.5	3.0	6.8
five times	60.8	3.4	4.7	1.5	8.6	6.0	15.1

Reference

- 1 K. Momota, Molten salts, 45 (2002) 42.
- 2 J. H. Simons, US Patent 2616927 (1952).
- 3 H. Bürger, H. Niepel, G. Pawelke, H. J. Frohn, and P. Sartori, *J. Fluorine Chem.*, **15** (1980) 231.
- 4 P. Sartori and N. Ignat'ev, *J. Fluorine Chem.*, **87** (1998) 157.
- 5 A. Tasaka, T. Yachi, T. Makino, K. Hamano, T. Kimura, and K. Momota, J. Fluorine Chem., 97 (1999) 253.
- 6 Yoshio Shodai, Minoru Inaba, Kunitaka Momota, Tomotaka Kimura, and Akimasa Tasaka, *Electrochem. Acta*, **49** (2004) 2131.