EFFECT OF MICRO-GAP ELECTRODE IN NITROGEN DIOXIDE SENSOR USING TUNGSTEN OXIDE THIN FILM

A. Miyaji, S. Ogura*, S. Konishi*, J. Tamaki Department of Applied Chemistry, Faculty of Science and Engineering, Ritsumeikan University, Kusatsu-shi, Shiga 525-8577, Japan

*Department of Mechanical Engineering, Faculty of Science and Engineering, Ritsumeikan University, Kusatsu-shi, Shiga 525-8577, Japan

We have found that the WO₃ thick film sensor equipped with Au comb-type microelectrodes (line width : 5 μ m, distance between lines : 5 μ m) showed extremely high sensitivity to dilute NO₂ [1-3]. It is considered that the usage of the disk-shaped WO₃ particles and the Au comb-type microelectrodes was responsible for high sensitivity to dilute NO₂. In this study, the effect of microelectrode on NO₂ sensing properties was elucidated as described below.

The micro-gap electrode with various gap sizes (0.2-1.6 μ m) and various line width (10-50 μ m) were fabricated bv means of MEMS techniques (photolithography and FIB techniques). The WO₃ thin film was deposited on the micro-gap electrode by using suspension dropping method to be micro-gap-sensor as schematically drawn in Fig. 1. The sensing properties to dilute NO2 of WO3 thin film microsensors were measured in the range of 0.01-3 ppm at 200 $\,^\circ\!\mathrm{C}\,$ and the effects of micro-gap size and line width on dilute NO₂ sensing properties were investigated. The sensitivity (S) was defined as Rg/Ra.

At first, the effect of micro-gap size on NO₂ sensing properties was evaluated. Figure 2 shows the sensitivities to dilute NO₂ of WO₃ thin film microsensor at 200 $^{\circ}$ C as a function of gap size. In this case, we used the micro-gap with line width of 10-15 µm. The sensitivity to dilute NO₂ was almost unchanged for the gap size larger than $0.85 \mu m$. However, the sensitivity tended to increase with decreasing gap size less than 0.85 μ m. The highest sensitivity (S=47 to 0.5 ppm NO₂, S=8 to 0.1 ppm NO₂) was obtained for the microsensor with gap size of 0.33 µm. When the gap size decreases, the number of WO₃ particles included in the gap decreases. If WO3 particles are linearly lined in the gap, it is assumed that the sensor resistance is the sum of resistance at interface between Au electrode and WO₃ particle, and WO₃ grain boundary resistances. When the gap size and thus the number of WO₃ particles decrease, the contribution of resistance between Au electrode and WO₃ particle to total sensor resistance increases. If the resistance change upon exposure to NO₂ at interface between Au electrode and WO_3 particle is much larger than that at WO_3 grain boundary, the NO₂ sensitivity increases with decreasing gap size.

From the results of gap size effect, it is considered that the higher sensitivity is expected when the contribution of Au electrode-WO₃ particle boundary becomes larger. Thus, the effect of line width was evaluated because large line width brought about a lot of Au-WO₃ boundaries. Figure 3 compared the gap size effect for micro-gap sensors with line width of 10 μ m and 50 μ m. In a whole range of gap size, the sensitivities were higher for the sensor with 50 μ m width than 10 μ m width although the plots were scattered a little.

Consequently, the sensitivity was found to increase with decreasing gap size as well as with increasing line width.

References

[1] J. Tamaki, A. Hayashi, Y. Yamamoto, Sensors and

Actuators B, 95, 111-115 (2003).

- [2] J. Tamaki, A. Hayashi, Y. Yamamoto, M. Matsuoka, Digest of Technical Papers of Transducers '03, 1, 524-527 (2003).
- [3] J. Tamaki, A. Hayashi, Y. Yamamoto, J. Ceram. Soc. Jpn., 112, S546-S549 (2004).

Fig. 1 Schematic drawing of WO₃ thin film microsensor equipped with micro-gap.

Fig. 2 Sensitivities to dilute NO_2 of WO_3 thin film microsensors as a function of gap size (operating temperature : 200 °C).

Fig. 3 Sensitivities to 0.2 ppm NO_2 of WO_3 this film microsensors with line width of 10 μm and 50 μm as a function of gap size.