Effect of Additives on Bactericidal Effect of ZnO Solid Solutions

 $\underline{Osamu Yamamoto}^1$, Jun Sawai² and Yasuhiro Iida²

¹Akita University, ²Kanagawa Institute of Technology

Corresponding Address: Research Institute of Materials and Resources, Faculty of Engineering and Resource Science, Akita University, 1-1 Tegata Gakuen-machi, Akita 010-8502, Japan. E-mail: yamamoto@rimr.akita-u.ac.jp

An effect of doping amount of either CaO or MnO₂ in ZnO solid solution on antibacterial characteristics was studied by conductance method and colony count method without the ZnO-CaO solid solution presence of light. powders were obtained, when CaO was added in the molar ratios (CaO/ZnO) < 0.10. In the ratios > 0.10, however, it resulted in a residual CaO in addition to the solid solution. In the case of $ZnO-MnO_2$ solid solution powders, a single phase was obtained in the samples mixed with the molar ratios $(MnO_2/ZnO) < 0.11$, but the ratios > 0.15 resulted in γ -Mn₂O₃ in addition to the solid solution. After milling the as-prepared powders by planetary ball mill, the specific surface area of these powder samples became about 10 m² g⁻¹, which was used in the test of growth-inhibition of bacteria (antibacterial test). In antibacterial test of ZnO-CaO solid solution, evaluation by the conductance method revealed that the increase in the amount of CaO in solid solution resulted in a decrease in the growth inhibitory effect, i.e., bacteriostatic effect, for Escherichia coli and Staphylococcus aureus. In addition, the inhibitory effect for Staphylococcus aureus was found to be stronger than that for Escherichia coli. In the case of colony count method, the killing effect, i.e, bactericidal effect, of solid solution on Staphylococcus aureus markedly increased with increasing the excess CaO in solid solution, i.e., the deposition of CaO from ZnO-CaO solid solution, as shown in Fig. 1. On the other hand, the bactericidal effect of ZnO-MnO₂ solid solution was found to increase with increasing the doping amount of MnO_2 in the molar ratios < 0.11. The effect when the doping amount was > 0.15 decreased with increasing the amount of MnO₂, and was similar to that of ZnO itself; that is, the bactericidal effect was less than that of ZnO doped with MnO_2 in the molar ratios < 0.11, as shown in Fig. The amount of hydrogen peroxide that 2. contributes to the occurrence of antibacterial activity increased with increasing the doping amount of MnO_2 in the molar ratio < 0.11. In the molar ratio > 0.15, however, hydrogen peroxide was found to decrease with increasing the doping amount of MnO_2 in powder sample.

Fig. 1. Change in survival ratio with incubation time: ZnO-CaO solid solution.

Fig. 2. Change in survival ratio with incubation time at powder concentration of 12.5×10^{-3} g cm⁻³; Molar ratio= \Box : 0.25, \triangle : 0.15, \blacktriangle :0.11, \blacksquare : 0.053, and \bigcirc : ZnO