Electrochemistry Fights World Cancer

SA10519_WCD_Logo_4cCancer is among the leading causes of mortality worldwide. According to the World Health Organization, approximately 14 million new cases and 8.2 million cancer related deaths were recorded in 2012. If no major breakthroughs are made in the field, that number is expected to rise by 70 percent over the next two decades. In honor of World Cancer Day, we’re taking a look at a few ways electrochemical and solid state science aids in the fight against cancer.

Electrochemical Biosensing for Cancer Detection
By taking biopsy slices for colon cancer, researchers were able to use electrochemical biosensors to distinguish between cancerous and normal epithelial tissues. This development helped promote rapid cancer detection by eliminating pretreatment and providing results obtained within minutes of biopsy removal. Read the full paper here.

Polymer Based Sensors to Diagnose Breast Cancer
There are many issues that mammography faces, including the uncomfortableness of the screening and exposure to radiation. In order to solve this issues, electrochemical scientists developed an Electrical Impedance Tomography (EIT) system. This radiation-less technique aims to enhance early detection capabilities by generating a 3-D map of the breast. Read the full paper here.

(more…)

Voltage profiles of charge-discharge cycles of the Li/Li3PS4/S battery.Image: Journal of The Electrochemical Society

Voltage profiles of charge-discharge cycles of the Li/Li3PS4/S battery.
Image: Journal of The Electrochemical Society

A team from Japan’s Samsung R&D has worked in collaboration with researchers from the University of Rome to fabricate a novel all solid state Lithium-sulfur battery.

The paper has been recently published in the Journal of The Electrochemical Society. (P.S. It’s Open Access! Read it here.)

The battery’s capacity is around 1,600 mAhg⁻¹, which denotes an initial charge-discharge Coulombic efficiency approaching 99 percent.

Additionally, the battery possesses such beneficial properties as the smooth stripping-deposition of lithium. In contrast to other Li-S cells, the new battery’s activation energy of the charge transfer process is much smaller.

(more…)

Electrochemistry Lights the Super Bowl

University of Phoenix Stadium

Site of Super Bowl XLIX

After the football teams and fans have left the stadium, after the television crews have wrapped up their interviews for the night, the stadium remains a-glow. This is the first time ever that a Super Bowl stadium has shone so brightly and with such an eye toward the environment.

According to takepart.com,

Sunday’s game between the New England Patriots and the Seattle Seahawks marks the first Super Bowl illuminated by LED lights, which boast an estimated 75 percent reduction in power and nearly double the glow of traditional metal halides—like the ones previously installed at the Phoenix, Arizona, stadium when it was built in 2006.

The stadium’s new set of 312 LED fixtures only need about 310,000 watts of power, compared with the 1.24 million watts of power required by the 780 metal halide bulbs.”

With this massive change over from traditional bulbs to LED lights, stadiums like the one in Phoenix and other around the country will have made significant strides toward green energy and hopefully LEED certification.

To learn more about LED lighting, check out our Digital Library.

New Issue of ECS Transactions Now Available

With the largest digital collection of electrochemistry and solid state related proceedings, ECST has published 750+ issues and over 16,000 articles since its launch in 2005.

With the largest digital collection of electrochemistry and solid state related proceedings, ECST has published 750+ issues and over 16,000 articles since its launch in 2005.

A new issue of ECS Transactions has now been published from the Fuel Cell Seminar & Energy Exposition 2014 meeting. This meeting was sponsored by The Electrochemical Society.

Volume 65
Fuel Cell Seminar & Energy Exposition 2014
Los Angeles, California, USA
November 10-13, 2014
 

For more information on ECS Transactions, please visit ECSTIssues are continuously updated and all full-text papers will be published here as soon as they are available.

Get currently published issues of ECST.

To be notified of newly published articles or volumes, please subscribe to the ECST RSS feed.

 

An Ever-Present Light (Bulb)

Centinnial Light Bulb

Lynn Owens, former chairman of the Centennial Light Bulb

Since 1901, just a year before The Electrochemical Society was founded, a light bulb was installed to bring light into a firehouse in Livermore, California. Back then, if a call came in for the firemen at night, they would have to dress, assemble their gear, and organize the hand water-trucks (no motorized firetrucks yet) in the dark. By adding what we now consider the simple light bulb, a fire station was much more readily able to handle emergencies. And that light bulb, now more than 113 years old, is still burning today.

This incandescent light bulb, invented by Adolphe A. Chaillet, was produced by the Shelby Electric Company. Originally giving off a glowing 60 watts, it now burns steadily at 4 watts. It has been moved several times, most recently in 1976, as the Livermore-Pleasanton Fire Department has changed locations.

“According to a website dedicated to the bulb, Debora Katz, a physicist at the US Naval Academy in Annapolis, Md., has conducted extensive research into the Livermore light bulb’s physical properties, using a vintage light bulb from Shelby Electric Co. that is a near replica of the Livermore light.

“The Livermore light bulb differs from a contemporary incandescent bulb in two ways,” says Katz. “First its filament is about eight times thicker than a contemporary bulb. Second, the filament is a semiconductor, most likely made of carbon.”

Watch the live webcam here to see the longest-burning light bulb in the world.

Listen to the 99% Invisible podcast for an in-depth look at the bulb.

Learn more about light bulbs in the ECS Digital Library.

Join Now! Save Up to 20% on Meetings

ECS provides excellent opportunities for you to become involved through the many activities of the Society.

ECS provides excellent opportunities for you to become involved through the many activities of the Society.

Join ECS today to take advantage of registration discounts. Learn more about additional membership benefits.

Renewing your membership before the meeting?
Don’t wait to renew your membership before the early bird registration deadline. Renewing your membership is easy. Log into your ECS account, select Renew Membership and then click Start the online Dues Renewal Process.

Questions about membership in ECS?
Contact customerservice@electrochem.org.

IMLB Focus Issue Now Online

The development and commercialization of Li-ion batteries in recent decades is without doubt the most important and impressive success of modern electrochemistry.

The development and commercialization of Li-ion batteries in recent decades is without doubt the most important and impressive success of modern electrochemistry.

The Journal of The Electrochemical Society (JES) is publishing focus issues related to IMLB (International Meeting on Lithium Batteries) beginning with the 2014 meeting. Important to note is that this focus issue is completely Open Access, enabling a much broader audience to read these papers than would have access with a subscription-only issue.

Go to the table of contents now!

Twenty-one papers have here been selected for this focus issue. These papers touch upon many important new aspects in the field and illustrate well the wide spectrum of topics that were discussed at the IMLB 2014 meeting.

The most important international conference event in the Li battery community is the biannual International Meeting on Lithium Batteries; a conference series founded by Bruno Scrosati which began 33 years ago. The IMLB meeting can, in fact, be seen as among the most important conferences related to power sources in general.

(more…)

The Science of Distilling

One brave man is distilling his own potent, yet drinkable, biofuel. Of course, there’s quite a bit of electrochemistry involved via this reflux still.

WARNING: Distilling alcohol is illegal in many places. (It can also be pretty dangerous for the novice distiller, so let’s leave this one to Hackett.)

Smaller, More Powerful Li-Ion Battery

Researchers around the world are in a scientific race to develop a near-perfect lithium-ion battery, and a startup from the Massachusetts Institute of Technology (MIT) may have just unlocked the secret.

In 2012, Qichao Hu founded SolidEnergy – a startup that grew out of research and academics from MIT. Qichao started with battery technology that he and ECS member Donald Sadoway developed.

Now, the company is claiming to have built a lithium-ion battery that could change battery technology as we know it.

(more…)

Member Spotlight – Yossef Elabd

Dr. Yossef Elabd, professor in the Artie McFerrin Department of Chemical Engineering at Texas A&M University, has developed two fuel cell vehicle platforms for both present day enhancements and future innovation.Image: Texas A&M University

Dr. Yossef Elabd, professor in the Artie McFerrin Department of Chemical Engineering at Texas A&M University, has developed two fuel cell vehicle platforms for both present day enhancements and future innovation.
Image: Texas A&M University

The Electrochemical Society’s Yossef A. Elabd is using electrochemical science to work toward global sustainability with his new advancements in fuel cell car technology.

Elabd, an active member of ECS’s Battery Division, has developed two fuel cell vehicle platforms for both present day enhancements and future innovation – focusing not only on the science, but also the environment.

“I just want to drive my car with water vapor coming out the back of it,” Elabd said.

With this new technology and initiatives such as the ECS Toyota Young Investigator Fellowship, Elabd’s statement may become an achievable reality for many people in the near future.

The idea of the fuel cell vehicle is every environmentalist’s dream, but the current issues deal with the sustainability of the vehicle. The current fuel cell car uses a proton exchange membrane (PEM) electrolyte for its platinum-based electrodes.

(more…)