By: Matt Murbach, University of Washington

Hack Day

Co-organizer David Beck led a hack session during the ECS Data Sciences Hack Day.

The full vibrancy of the electrochemical community was on show during the recent 232nd ECS Meeting in National Harbor, MD. Adding to the diversity of ideas and excitement for electrochemistry were the 30 participants of the inaugural ECS Data Sciences Hack Day on Wednesday, October 4. The participants in the hack day traveled from around the globe and represented varying stages of careers in both academic and industry roles.

The day-long event was kicked off with a short series of informational sessions covering some of the essential tools in any data scientist’s toolbox. During lunch, participants pitched their ideas for projects, and teams for the afternoon session organically formed around common interests. The remaining time during the afternoon was reserved as open “hacking” time for working on the project ideas. Excitingly, good progress was made in this four-hour block with teams working on a wide variety of projects, including:

(more…)

Student Poster Session

Winners of the Student Poster Session with ECS President Johna Leddy (center). Click to enlarge.

Congratulations to the winners of the General Student Poster Session for the 232nd ECS Meeting in National Harbor, Maryland!

ECS established the General Student Poster Session Awards in 1993 to acknowledge the eminence of its students’ work. The winners exhibit a profound understanding of their research topic and its relation to fields of interest to ECS.

In order to be eligible for the General Student Poster Session Awards, students must submit their abstracts to the Z01 General Society Student Poster Session symposium and present their posters at the biannual meeting.

The winners of the General Student Poster Session Awards for the 232st ECS Meeting are as follows:

(more…)

GridEngineers have developed a 4-in-1 smart utilities plant that produces electricity, water, air-conditioning, and heat in an environmentally friendly and cost-effective way.

The eco-friendly system harvests waste energy and is suitable for building clusters and underground cities, especially those in the tropics.

“Currently, significant amount of energy is required for the generation of electricity, water, air-conditioning, and heat. Running four independent processes also result in extensive energy wastage, and such systems take up a huge floor area,” says Ernest Chua, associate professor in the mechanical engineering department at National University of Singapore Faculty of Engineering.

“With our smart plant, these processes are carefully integrated together such that waste energy can be harvested for useful output. Overall, this novel approach could cut energy usage by 25 to 30 percent and the 4-in-1 plant is also less bulky.

“Users can also enjoy cheaper and a more resilient supply of utilities.”

(more…)

By: Jeremy Straub, North Dakota State University

Driverless carIn the wake of car- and truck-based attacks around the world, most recently in New York City, cities are scrambling to protect busy pedestrian areas and popular events. It’s extremely difficult to prevent vehicles from being used as weapons, but technology can help.

Right now, cities are trying to determine where and how to place statues, spike strip nets and other barriers to protect crowds. Police departments are trying to gather better advance intelligence about potential threats, and training officers to respond – while regular people are seeking advice for surviving vehicle attacks.

These solutions aren’t enough: It’s impractical to put up physical barriers everywhere, and all but impossible to prevent would-be attackers from getting a vehicle. As a researcher of technologies for self-driving vehicles, I see that potential solutions already exist, and are built into many vehicles on the road today. There are, however, ethical questions to weigh about who should control the vehicle – the driver behind the wheel or the computer system that perceives potential danger in the human’s actions.

(more…)

Nuclear energyScientists have developed an extremely efficient “molecular trap” that can be recycled and reused to capture radioactive iodides in spent nuclear reactor fuel.

The trap is like a tiny, porous super-sponge. The internal surface area of just one gram could stretch out to cover five 94-by-50-foot basketball courts, or 23,500 square feet. And, once caught inside, radioactive iodides will remain trapped for eons.

“This type of material has tremendous potential because of its high porosity,” says Jing Li, professor of chemistry and chemical biology at Rutgers University-New Brunswick. “It has far more space than a sponge and it can trap lots of stuff.”

Reprocessing means separating spent nuclear reactor fuel into materials that may be recycled for use in new nuclear fuel or discarded as waste, according to the US Nuclear Regulatory Commission. The United States has no commercial reprocessing facilities at the moment, but they are operating in other countries.

(more…)

BatteryCapitalizing on tiny defects can improve electrodes for lithium-ion batteries, new research suggests.

In a study on lithium transport in battery cathodes, researchers found that a common cathode material for lithium-ion batteries, olivine lithium iron phosphate, releases or takes in lithium ions through a much larger surface area than previously thought.

“We know this material works very well but there’s still much debate about why,” says Ming Tang, an assistant professor of materials science and nanoengineering at Rice University. “In many aspects, this material isn’t supposed to be so good, but somehow it exceeds people’s expectations.”

Part of the reason, Tang says, comes from point defects—atoms misplaced in the crystal lattice—known as antisite defects. Such defects are impossible to completely eliminate in the fabrication process. As it turns out, he says, they make real-world electrode materials behave very differently from perfect crystals.

(more…)

PolymerA method to overcome the inherent trade-off between strength and flexibility in certain types of polymers gets inspiration from the tough, flexible polymeric byssal threads that marine mussels use to secure themselves to surfaces in the rugged intertidal zone.

A wide range of polymer-based materials, from tire rubber and wetsuit neoprene to Lycra clothing and silicone, are elastomers valued for their ability to flex and stretch without breaking and return to their original form.

Making such materials stronger, however, usually means making them more brittle. That’s because, structurally, elastomers are rather shapeless networks of polymer strands—often compared to a bundle of disorganized spaghetti noodles—held together by a few chemical cross-links.

Strengthening a polymer requires increasing the density of cross-links between the strands by creating more links. This causes the elastomer’s strands to resist stretching away from each other, giving the material a more organized structure but also making it stiffer and more prone to failure.

(more…)

By: Gunnar W. Schade, Texas A&M University

FrackingUrban air pollution in the U.S. has been decreasing near continuously since the 1970s.

Federal regulations, notably the Clean Air Act passed by President Nixon, to reduce toxic air pollutants such as benzene, a hydrocarbon, and ozone, a strong oxidant, effectively lowered their abundance in ambient air with steady progress.

But about 10 years ago, the picture on air pollutants in the U.S. started to change. The “fracking boom” in several different parts of the nation led to a new source of hydrocarbons to the atmosphere, affecting abundances of both toxic benzene and ozone, including in areas that were not previously affected much by such air pollution.

As a result, in recent years there has been a spike of research to determine what the extent of emissions are from fracked oil and gas wells – called “unconventional” sources in the industry. While much discussion has surrounded methane emissions, a greenhouse gas, less attention has been paid to air toxics.

(more…)

GrapheneScientists have learned how to tame the unruly electrons in graphene.

Graphene is a nano-thin layer of the carbon-based graphite in pencils. It is far stronger than steel and a great conductor. But when electrons move through it, they do so in straight lines and their high velocity does not change. “If they hit a barrier, they can’t turn back, so they have to go through it,” says Eva Y. Andrei, professor in the Rutgers University-New Brunswick department of physics and astronomy and the study’s senior author.

“People have been looking at how to control or tame these electrons.”

Graphene is a better conductor than copper and is very promising for electronic devices.

The new research “shows we can electrically control the electrons in graphene,” says Andrei. “In the past, we couldn’t do it. This is the reason people thought that one could not make devices like transistors that require switching with graphene, because their electrons run wild.”

(more…)

Transparent solar materials on windows could gather as much energy as bulkier rooftop solar units, say researchers.

The authors of a new paper argue that widespread use of such highly transparent solar applications, together with the rooftop units, could nearly meet US electricity demand and drastically reduce the use of fossil fuels.

“Highly transparent solar cells represent the wave of the future for new solar applications,” says Richard Lunt, an associate professor of chemical engineering and materials science at Michigan State University. “We analyzed their potential and show that by harvesting only invisible light, these devices can provide a similar electricity-generation potential as rooftop solar while providing additional functionality to enhance the efficiency of buildings, automobiles, and mobile electronics.”

(more…)

  • Page 5 of 68