IIT Student Chapter Holds First Event

Dr. Chamberlain giving a lecture the students and faculty at the IIT student chapter's first event.

Dr. Chamberlain giving a lecture to the students and faculty at the IIT student chapter’s first event.

The Illinois Institute of Technology is one of ECS’s newest student chapters, and they held their first event on November 23, 2015. They received an excellent attendance rate of nearly one hundred students in addition to IIT faculty members and faculty from other near by institutions.  This event included the director of the Argonne Collaborative Center for Energy Storage Science (ACCESS), Dr. Jeffrey Chamberlain, who is also the deputy director of the Joint Center for Energy Storage Research (JCESR). Dr. Chamberlain hosted a lecture that included information and a detailed analysis on the innovation of battery technologies.

Following the lecture, a Q&A session was held, which gave the students and faculty in attendance the opportunity to address questions produced from Dr. Chamberlain’s lecture. These questions included the topics of environmental issues, the life cycle of lithium ion batteries, development of lithium-air batteries and even government policy and funding. The formal lecture and Q&A session was followed with refreshments and continued discussion. The IIT student chapter is extremely grateful to Dr. Chamberlain for taking the time out of his very busy schedule to come and interact with the chapter at their first event.

Congratulations, IIT Student Chapter on a very successful kick-off event!

Advances in Sodium Batteries

With energy demands increasing every day, researchers are looking toward the next generation of energy storage technology. While society has depended on the lithium ion battery for these needs for some time, the rarity and expense of the materials needed to produce the battery is beginning to conflict with large-scale storage needs.

To combat this issue, a French team comprised of researchers primarily from CNRS and CEA is making gains in the field of electrochemical energy storage with their new development of an alternative technology for lithium ion batteries in specific sectors.

Beyond Lithium

Instead of the rare and expensive lithium, these researchers are focusing on the use of sodium ions—a more cost efficient and abundant materials. With efficiently levels comparable to that of lithium, many commercial sectors are showing an increasing interest for sodium’s potential in storing renewable energy.

While this development takes the use of sodium to a new level, the idea has been around since the 1980s. However, sodium never took off as the primary battery building material due to low energy densities and short life cycles. It was then that researchers chose to power electronics with lithium for higher efficiency levels.

(more…)

Powering Batteries in Harsh Environments

Researchers across the globe have been investing more and more effort into developing new materials to power the next generation of devices. With the population growing and energy demands rising, the need for smaller, faster, and more efficient batteries is more prevalent than ever.

While some researchers are attempting to develop complex material combinations to tackle this issue, researchers from Rice University are going back to basics by developing a clay-based electrolyte.

Utilizing clay as a primary material in a lithium ion battery could address current issues that the battery has with high temperature performance. With clay, the researchers were able to supply stable electrical power in environments with temperatures up 120°C. The addition of clay to the electrode could allow lithium ion batteries to function in harsh environments including space, defense, and oil and gas applications.

(more…)

Hydrogen Meets Lithium Ion Batteries

When it comes to energy storage, hydrogen is becoming more and more promising. From hydrogen fuel cell vehicles to the “artificial leaf” to the transformation of waste heat into hydrogen, researchers are looking to hydrogen for answers to the growing demand for energy storage.

At the Lawrence Livermore National Laboratory (LLNL), researchers are using hydrogen to make lithium ion batteries operate longer and have faster transport rates.

In a response to the need for higher performance batteries, the researchers began by looking for a way to achieve better capacity, voltage, and energy density. Those qualities are primarily determined by the binding between lithium ions and electrode material. Small changes to the structure and chemistry of the electrode can mean big things for the qualities of the lithium ion battery.

The research team from LLNL discovered that by subtly changing the electrode, treating it with hydrogen, lithium ion batteries could have higher capacities and faster transport levels.

“These findings provide qualitative insights in helping the design of graphene-based materials for high-power electrodes,” said Morris Wang, an LLNL materials scientist and co-author of the paper.

(more…)

Technology Prospects for Future Mobility

review-paperWith the transportation sectors of industrialized countries on the rise and greenhouse gas emissions at an all-time high, many scientists and engineers are searching for the next-generation of transportation. From hybrid to electric to hydrogen, alternative energy sources for vehicles are being explored and tested throughout the scientific community. Now, many are wondering which technology will win in the race between battery- and hydrogen-powered cars.

A recent open access paper published in the Journal of The Electrochemical Society (JES) explores this topic. Authors Hubert A. Gasteiger, Jens-Peter Suchsland, and Oliver Gröger have outlined the technological barriers for next-generation vehicles in “Review—Electromobility: Batteries or Fuel Cells?” This paper comes as part of the recent JES Collection of Invited Battery Review Papers.

The majority of today’s vehicles depend on petroleum-based products in internal combustion engines to operate. The burning of these fuels results in the emission of greenhouse gasses. The majority of these transportation sector greenhouse gas emissions do not come from large modes of transportation such as aircrafts or ships—but are primarily produced by cars, trucks, and SUVs.

In the recently published review, the authors describe the possibilities of extended range electric vehicles, the challenges in hydrogen fuel cell vehicles, and the potential for new materials to be used in these applications.

Read this open access paper and read the rest of the JES Collection of Invited Battery Review Papers.

The Brno Chapter's participants at the 16th ABAF meeting.

The Brno Chapter’s participants at the 16th ABAF meeting.

The spotlight is on the Brno Student Chapter from the Czech Republic! The Brno Student Chapter was established in 2006. The focus of their activities is on batteries, electrochemical conversion and the storage research field.

On September 3, 2015, members of the Brno Chapter presented at the 16th International Conference on Advanced Batteries, Accumulators and Fuel Cells, also known as ABAF. Proceedings of this meeting will be published in an edition of ECS Transactions. In addition, four members have submitted dissertation theses this year, which are scheduled to be presented and defended early 2016. Great job, Brno!

Want your student chapter in the spotlight? Send an email to beth.fisher@electrochem.org to tell us what makes your chapter stand out!

Experimental Techniques for Next-Gen Batteries

On the path to building better batteries, researchers have been choosing silicon as their material of choice to increase life-cycle and energy density. Silicon is favored among researchers because its anodes have the ability to store up to ten times the amount of lithium ions than conventional graphite electrodes. However, silicon is a rather rigid material, which makes it difficult for the battery to withstand volume changes during charge and discharge cycles.

This from Georgia Tech:

Using a combination of experimental and simulation techniques, researchers from the Georgia Institute of Technology and three other research organizations have reported surprisingly high damage tolerance in electrochemically-lithiated silicon materials. The work suggests that all-silicon anodes may be commercially viable if battery charge levels are kept high enough to maintain the material in its ductile state.

(more…)

The Key to Fast-Charging Li-Ion Batteries

Batteries are a critical part of our everyday lives. From phones to laptops to cars to grid energy storage—batteries are essential to many devices. Lithium ion batteries have taken the lead in battery technology, with lithium iron phosphate batteries (LFP) performing particularly well. While it was known that LFP batteries could charge quickly and withstand many factors, the reasons for this were unknown until know.


A team of researchers from the Paul Scherrer Institute and Toyota Central R&D Labs has discovered why LFP batteries can be recharged so rapidly. The team is comprised of ECS member Tsuyoshi Sasaki, past members Michael Hess and Petr Novak, and Journal of The Electrochemical Society (JES) published author Claire Villevieille.

(PS: Check out their past paper, “Surface/Interface Study on Full xLi2MnO3·(1 − x)LiMO2 (M = Ni, Mn, Co)/Graphite Cells.”)

This from Paul Scherrer Institute:

The reason: the step-like concentration gradient gives way to a gentle, ramp-like progression of the lithium concentration. This is because, at higher voltages, the lithium ions involved in the charging process are distributed across the volume of the electrode particles for brief moments as opposed to being herded together in a thin layer boundary. As a result, the lithium can be set in motion more easily during charging, without the need for more energy to be added to negotiate the layer boundary.

(more…)

Charging Electric Cars in Five Minutes

Earlier this year, we looked at the Israeli start-up company StoreDot’s innovative research in battery technology that could allow a smartphone battery to charge in just 30 seconds.

Now, the same company is taking that same technology and applying it to electric vehicles.

The company is claiming to have tweaked their technology to fully charge an electric car in just five minutes.

According to StoreDot, an array of 7,000 cells could enable electric vehicles to travel up to 300 mile on just a five minute charge.

This from Ecomento:

StoreDot believes it can speed up charging by creating a new variant of the industry-standard lithium-ion chemistry. It uses nanotechnology to make new organic materials that researchers claim have lower resistance than the materials used in current lithium-ion cells. That means electricity can flow through the battery more easily.

(more…)

Tiny Particle, Big Results

EJ Taylor, ECS Treasurer and Chief Technical Officer at Faraday Technology, recently ran across this article from The Economist discussing an accidental discovery that could yield big results.

Materials scientists Wang Changan of Tsinghua University and Li Ju of MIT may have unintentionally found the answer to developing a battery that can last up to four times longer than the current generation.

Initially, the scientists were simply researching nanoparticles made of aluminum. While these tiny particles are good conductors of electricity, they become less efficient when exposed to air. When air hits these tiny particles, a coating of an oxide film begins to develop, greatly affecting the performance. The research the two scientists were working on was not to create a better battery, but rather to eliminate the oxide that coats the particles.

This from The Economist:

Their method was to soak the particles in a mixture of sulphuric acid and titanium oxysulphate. This replaces the aluminium oxide with titanium oxide, which is more conductive. However, they accidentally left one batch of particles in the acidic mixture for several hours longer than they meant to. As a result, though shells of titanium dioxide did form on them as expected, acid had time to leak through these shells and dissolve away some of the aluminium within. The consequence was nanoparticles that consisted of a titanium dioxide outer layer surrounding a loose kernel of aluminium.

(more…)