Access to clean drinking water remains an issues around the globe, with 663 million people lacking access to safe water sources. Current scientific methods that work to remove small and diluted pollutants from water tend to be either energy or chemical intensive. New research from a team at MIT provides insight into a new process of removing even extremely low levels of unwanted compounds.

This from MIT:

The system uses a novel method, relying on an electrochemical process to selectively remove organic contaminants such as pesticides, chemical waste products, and pharmaceuticals, even when these are present in small yet dangerous concentrations. The approach also addresses key limitations of conventional electrochemical separation methods, such as acidity fluctuations and losses in performance that can happen as a result of competing surface reactions.

(more…)

Researchers have created a flexible electronic device that can easily degrade just by adding a weak acid like vinegar.

“In my group, we have been trying to mimic the function of human skin to think about how to develop future electronic devices,” says Stanford University engineer Zhenan Bao.

She described how skin is stretchable, self-healable, and also biodegradable—an attractive list of characteristics for electronics. “We have achieved the first two [flexible and self-healing], so the biodegradability was something we wanted to tackle.”

A United Nations Environment Program report found that almost 50 million tons of electronic waste were thrown out in 2017—more than 20 percent higher than waste in 2015.

“This is the first example of a semiconductive polymer that can decompose,” says lead author Ting Lei, a postdoctoral fellow working with Bao.

In addition to the polymer—essentially a flexible, conductive plastic—the team developed a degradable electronic circuit and a new biodegradable substrate material for mounting the electrical components. This substrate supports the electrical components, flexing and molding to rough and smooth surfaces alike. When the electronic device is no longer needed, the whole thing can biodegrade into nontoxic components.

(more…)

Exploring the possibilities of Gallium Oxide

SemiconductorSemiconductor materials make possible many of today’s technological advances, from handheld electronics to solar cells and even electric vehicles. Specifically, wide bandgap semiconductors have opened new opportunities in ultra-high power electronics applications for utility grid management, military radar systems, and smart grid technologies. In order for these emerging technologies to be successful, researchers are looking to develop materials that are stronger, faster, and more efficient than ever before.

“New materials are the cornerstone of innovation in technology since they allow improved performance and lead to new applications and markets,” says Stephen Pearton, ECS fellow and professor at the University of Florida. “The semiconductor industry has a long history of such innovation and Gallium Oxide (Ga2O3) is a promising new material to continue this trend.”

Pearton recently co-authored an open access Perspective article published in the ECS Journal of Solid State Science and Technology, “Opportunities and Future Directions for Ga2O3,” discussing the potential for Gallium Oxide to surpass conventional semiconductor materials, emphasizing its capability to handle extremely high power applications. ECS’s Perspective articles provide a platform for author’s to offer insight into emerging or established fields.

(more…)

Water purificationAccess to adequate water and sanitation is a major obstacle that impacts nations across the globe. Currently 1 in 10 people – or 663 million – lack access to safe water. Due to the global water crisis, more than 1.5 billion people are affected by water-related diseases every year. However, many of those disease causing organisms could be removed from water with hydrogen peroxide, but production and distribution of hydrogen peroxide is a challenge in many parts of the world that struggle with this crisis.

Now, a team of researchers from the U.S. Department of Energy’s SLAC National Accelerator Laboratory and Stanford University have develop a small device that can produce hydrogen peroxide with a little help from renewable energy sources (i.e. conventional solar panels).

“The idea is to develop an electrochemical cell that generates hydrogen peroxide from oxygen and water on site, and then use that hydrogen peroxide in groundwater to oxidize organic contaminants that are harmful for humans to ingest,” says Chris Hahn, a SLAC scientist.

(more…)

By: Chenfeng Ke, Dartmouth College

Nanomachines are tiny molecules – more than 10,000 lined up side by side would be narrower than the diameter of a human hair – that can move when they receive an external stimulus. They can already deliver medication within a body and serve as computer memories at the microscopic level. But as machines go, they haven’t been able to do much physical work – until now. The Conversation

My lab has used nano-sized building blocks to design a smart material that can perform work at a macroscopic scale, visible to the eye. A 3-D-printed lattice cube made out of polymer can lift 15 times its own weight – the equivalent of a human being lifting a car.

Nobel-winning roots are rotaxanes

The design of our new material is based on Nobel Prize-winning research that turned mechanically interlocked molecules into work-performing machines at nanoscale – things like molecular elevators and nanocars.

Rotaxanes are one of the most widely investigated of these molecules. These dumbbell-shaped molecules are capable of converting input energy – in the forms of light, heat or altered pH – into molecular movements. That’s how these kinds of molecular structures got the nickname “nanomachines.”

(more…)

Sensors have become intertwined with our everyday life. From the cars to phones to medical devices, sensors are embedded in many of the technologies we consistently use.

However, microelectromechanical systems (MEMS) accelerometers, which measure the rate of change in an object’s speed, can be tricked, according to a new study from the University of Michigan.

This from the University of Michigan:

Researchers used precisely tuned acoustic tones to deceive 15 different models of accelerometers into registering movement that never occurred. The approach served as a backdoor into the devices—enabling the researchers to control other aspects of the system.

(more…)

By: Gary W. Hunter, Raed A. Dweik, Darby B. Makel, Claude C. Grisby, Ryan S. Mayes, and Cristian E. Davis

IOTThe advent of the Internet of Things suggests the potential for broad dissemination of information through a world of networked systems. An aspect of this paradigm is reflected in the concept of Smart Sensors Systems previously described in Interface: Complete self-contained sensor systems that include multi-parameter sensing, data logging, processing and analysis, self-contained power, and an ability to transmit or display information.

One application of Smart Sensor Systems is in the healthcare field. The concept of smart technologies that can monitor a patient’s health, assist in remote assessment by a health care provider, and improve the patient’s quality of life with limited intrusion and decreased costs is another aspect of a more interconnected world composed of distributed intelligent systems. One area where smart sensor systems may have a significant health care impact is in the area of breath analysis.

Breath analysis techniques offer a potential revolution in health care diagnostics, especially if these techniques can be brought into standard use. Of particular interest is the development of portable breath monitoring systems that can be used outside of a clinical setting, such as at home or during an activity. This article provides a brief overview of the motivation for breath monitoring, possible components of portable breath monitoring systems, and provides an example of this approach.

Read the full article in the winter 2016 edition of Interface.

By: Jonathan Coopersmith, Texas A&M University

EVImagine if you could gas up your GM car only at GM gas stations. Or if you had to find a gas station servicing cars made from 2005 to 2012 to fill up your 2011 vehicle. It would be inconvenient and frustrating, right? This is the problem electric vehicle owners face every day when trying to recharge their cars. The industry’s failure, so far, to create a universal charging system demonstrates why setting standards is so important – and so difficult.

When done right, standards can both be invisible and make our lives immeasurably easier and simpler. Any brand of toaster can plug into any electric outlet. Pulling up to a gas station, you can be confident that the pump’s filler gun will fit into your car’s fuel tank opening. When there are competing standards, users become afraid of choosing an obsolete or “losing” technology.

Most standards, like electrical plugs, are so simple we don’t even really notice them. And yet the stakes are high: Poor standards won’t be widely adopted, defeating the purpose of standardization in the first place. Good standards, by contrast, will ensure compatibility among competing firms and evolve as technology advances.

My own research into the history of fax machines illustrates this well, and provides a useful analogy for today’s development of electric cars. In the 1960s and 1970s, two poor standards for faxing resulted in a small market filled with machines that could not communicate with each other. In 1980, however, a new standard sparked two decades of rapid growth grounded in compatible machines built by competing manufacturers who battled for a share of an increasing market. Consumers benefited from better fax machines that seamlessly worked with each other, vastly expanding their utility.

(more…)

From artificial limbs to cochlear implants, biomedical advancements are opening up new opportunities for health care. Now, researchers from the University of Delaware are working to further improve the lifetime and effectiveness of those biomedical devices by improving communication between the technology and neural tissue.

In order to improve the devices, researchers worked to develop a direct interfacing material to improve communication between the device and the body. For this, the team focused on a conjugated polymer known as PEDOT.

Video credit: Leah Dodd/ University of Delaware

This from University of Delaware:

Compared to other methods, surface modification through electro-grafting takes just minutes. Another advantage is that a variety of materials can be used as the conducting substrate, including gold, platinum, glassy carbon, stainless steel, nickel, silicon, and metal oxides.

Read the full article.

“Our results suggest that this is an effective means to selectively modify microelectrodes with highly adherent and highly conductive polymer coatings as direct neural interfaces,” says David Martin, lead researcher.

HydrogenSometimes the biggest advancements are the smallest in size.

A multidisciplinary team from Sandia National Laboratories recently demonstrated that notion by using nanoparticles and a nanoconfinement system to improve the performance of hydrogen storage materials. The researchers believe that this development is a step in the right direction to improve efficiency of hydrogen fuel cell electric vehicles.

Currently, hydrogen fuel cell electric vehicles store hydrogen as a high-pressure gas. However, the researchers argue that a solid material would be able to act like a sponge, with the ability to absorb and release hydrogen more efficiently. Using a hydrogen storage material of this nature could increase the amount of hydrogen able to be stored in a vehicle. In order to be efficient and competitive in the transportation sector, a hydrogen fuel cell electric vehicle would have to be able to travel 300 miles before refueling.

“There are two critical problems with existing sponges for hydrogen storage,” says Vitalie Stavila, co-author of the study and past ECS member. “Most can’t soak up enough hydrogen for cars. Also, the sponges don’t release and absorb hydrogen fast enough, especially compared to the 5 minutes needed for fueling.”

(more…)

  • Page 1 of 13