Electrochemistry Tackles Air Quality

Researchers from Cambridge University have developed low-cost pollution detectors to help combat the world’s largest environmental health risk.

“To work out the factors we should be worried about, and how we can intervene, we need to rethink how we measure what’s going on,” said atmospheric scientists Professor Rod Jones.

While pollution detectors do exist, their network is currently limited due to the high cost of the devices. Jones and his team have set out to develop a small, low-cost pollution detector that is sensitive enough to track air changes and quality on a street-by-street basis.

The team based their work on an electrochemical sensor that is industrially safe and can detect toxins at the parts-per-billion level.

(more…)

Super-Sensor Spots Cancer Markers

Logan Streu, ECS Content Associate & Assistant to the CCO, recently came across this article detailing an electrochemical device’s life saving potential in cancer treatment.

A new electrochemical sensor is paving the way for quick and affordable “liquid biopsies,” opening the possibility of detecting deadly cancer markers in minutes. This new development could help tailor treatments to specific patients and improve the accuracy of initial diagnosis.

Personalized medicine is a huge part of a new, promising future in cancer treatment. With the ability to tailor treatment to each individual tumor, treatments can become more effective and yield less side-effects.

In an effort to get closer to the ultimate goal of tailored cancer treatment, Shana Kelley and her team at the University of Toronto joined forces with a researcher from the Montreal Children’s Hospital in Quebec to develop the new electrochemical super-sensor.

(more…)

Liquid Antenna Controlled by Voltage

The liquid metal antenna can be tuned to listen to various frequencies by applying electrical voltage.Image: Jacob Adams/NCSU

The liquid metal antenna can be tuned to listen to various frequencies by applying electrical voltage.
Image: Jacob Adams/NCSU

The scientific community has been trying to tap into the potential of liquid metals for some time now, but have faced roadblocks in developing something that is highly efficient when paired with electronics. Now, North Carolina State University researchers have successfully designed a liquid metal antenna controlled by only electrical voltage.

The work is relatively simple in theory. A positive voltage applied to a liquid metal will make it expand, whereas the application of a negative voltage will make it contract.

“Our antenna prototype using liquid metal can tune over a range of at least two times greater than systems using electronic switches,” said Jacob Adams, assistant professor in the Department of Electrical and Computer Engineering at NCSU.

(more…)

Nano-Transistor Assesses Health

The low

The ultra-low power sensor can scan the contents of liquids such as perspiration.
Image: EPFL/Jamani Caillet

Researchers from École Polytechnique Fédérale de Lausanne (EPFL) have developed an ultra-low power sensor to monitor health through the scanning of perspiration.

Director of Nanoelectronic Devices Laboratory (Nanolab) at EPFL, Adrian Ionescu—ECS published author in both the Journal of The Electrochemical Society and ECS Transactions—states that the new sensor can sync to your mobile device to alert you of your hydration, stress, and fatigue levels.

“The ionic equilibrium in a person’s sweat could provide significant information on the state of his health,” says Ionescu. “Our technology detects the presence of elementary charged particles in ultra-small concentrations such as ions and protons, which reflects not only the pH balance of sweat but also more complex hydration of fatigues states. By an adapted functionalization I can also track different kinds of proteins.”

(more…)

One Step Closer to Bionic Brain

New research shows that we’re one step closer to being able to replicate the human brain outside of the body, which could lead to life-altering research into common conditions such as Alzheimer’s and Parkinson’s disease.

Project leader and ECS published author Sharath Sriram and his group have successfully engineered an electronic long-term memory cell, which mimics the way the human brain processes information.

“This is the closest we have come to creating a brain-like system with memory that learns and stores analog information and is quick at retrieving this stored information,” Sharath said.

(more…)

Nanoporous gold features high effective surface area, tunable pore size, and high electrical conductivity and compatibility with traditional fabrication techniques.Image: Ryan Chen/LLNL

Nanoporous gold features high effective surface area, tunable pore size, and high electrical conductivity and compatibility with traditional fabrication techniques.
Image: Ryan Chen/LLNL

Researchers from Lawrence Livermore National Laboratory and the University of California, Davis have recently published a paper showing that covering an implantable neural electrode with nanoporus gold could potentially eliminate the risk of scar tissue forming over the electrode’s surface.

Two former ECS member, Erkin Seker and Juergen Biener, were among the researchers involved with this development.

This from Lawrence Livermore National Laboratory:

The team demonstrated that the nanostructure of nanoporous gold achieves close physical coupling of neurons by maintaining a high neuron-to-astrocyte surface coverage ratio. Close physical coupling between neurons and the electrode plays a crucial role in recording fidelity of neural electrical activity.

(more…)

Each doll housed a phonograph that was activated by a crank on the doll's back.Image: John Reed/National Park Service

Each doll housed a phonograph that was activated by a crank on the doll’s back.
Image: John Reed/National Park Service

Beth Schademann, ECS Publications Specialist, recently came across an NPR article regarding one of ECS’s most famous members and his slightly terrifying, obscure invention.

We talk quite a bit about Thomas Edison here at ECS. Edison happens to be one of our earliest and most recognizable members, not to mention a prolific inventor and entrepreneur.

While Edison is most known for his inventions related to the light bulb and phonograph, he also created the world’s first talking doll back in 1890.

The dolls still exist, but it wasn’t possible to hear the recordings on their tiny phonographs until now. Although, we may have been better off if we never heard these creepy renditions of classic children’s songs.

Edison wasn’t trying to take over the doll market with these toys, he was instead attempting to market his new wax cylinder phonograph for people to use in their homes.


If you also find these recording a bit unsettling, you’re not alone—Edison himself even found them unpleasant. After the dolls flopped in the market due to their high price ($200 in today’s currency) and creepy nature, Edison stopped manufacturing them after only two months.

A curator from the Thomas Edison National Historical Park states that after the dolls went under, Edison refereed to them as his “little monsters.”

(more…)

While CNT alignment is still not perfect, it will now be able to be scaled up for large-scale production.Source: North Carolina State University

While CNT alignment is still not perfect, it will now be able to be scaled up for large-scale production.
Source: North Carolina State University

A new process called “microcombing” has been developed to created ultra-strong and highly conductive carbon nanotubes (CNTs).

The films produced from the microcombing technique could have practical applications in improving electronics and aerospace technology.

“It’s a simple process and can create a lightweight CNT film, or ‘bucky paper,’ that is a meter wide and twice as strong as previous such films—it’s even stronger than CNT fibers,” said Yuntian Zhu, Distinguished Professor of Material Science and Engineering at NC State.

(more…)

Engineering a Better Solar Cell

This new development will lead to accelerated improvements in the materials' uniformity, stability, and efficiency.Source: University of Washington

This new development will lead to accelerated improvements in the materials’ uniformity, stability, and efficiency.
Source: University of Washington

In light of the growth in solar energy research, scientists have been directing a lot of attention toward perovskites. The materials’ wide range of use and potential to outpace silicon-based semiconductors in the field of solar cells makes perovskites an interesting area of research with great potential.

Researchers from the University of Washington, in conjunction with the University of Oxford, have discovered a new quality to perovskites that could help engineer a better solar cell.

The researchers have shown in their research that, contrast to popular belief, the perovskites are uniform in composition. The materials actually contain flaws that can be engineered to improve solar devices even further.

“In that short amount of time, the ability of these materials to convert sunlight directly into electricity is approaching that of today’s silicon-based solar cells, rivaling technology that took 50 years to develop,” said Dane deQuilettes, a University of Washington doctoral student. “But we also suspect there is room for improvement.”

(more…)

Engineers developed this one-material battery by sprinkling carbon (red) into each side of a new material (blue) that forms the electrolyte and both electrodes at the ends of the battery.Source: Maryland NanoCenter

Engineers developed this one-material battery by sprinkling carbon (red) into each side of a new material (blue) that forms the electrolyte and both electrodes at the ends of the battery.
Source: Maryland NanoCenter

ECS student member Fudong Han and former member Chunsheng Wang have developed a novel solid state battery comprised of just one material that can both move and store electricity.

This new battery could prove to be revolutionary in the area of solid state batteries due to its incorporation of electrodes and electrolytes into a single material.

“Our battery is 600 microns thick, about the size of a dime, whereas conventional solid state batteries are thin films — forty times thinner. This means that more energy can be stored in our battery,” said Han, the first author of the paper and a graduate student in Wang’s group.

This from the University of Maryland:

The new material consists of a mix of sulfur, germanium, phosphorus and lithium. This compound is used as the ion-moving electrolyte. At each end, the scientists added carbon to this electrolyte to form electrodes that push the ions back and forth through the electrolyte as the battery charges and discharges. Like a little bit more sugar added at each end of a cookie-cream mixture, the carbon merely helps draw the electricity from side to side through the material.

(more…)