Micromotors Powered by Bacteria

Researchers are using genetically engineered E. coli to power micromotors, with the swimming bacteria causing the motors to rotate in a similar fashion to a river rotating a watermill.

“Our design combines a high rotational speed with an enormous reduction in fluctuation when compared to previous attempts based on wild-type bacteria and flat structures,” says Roberto Di Leonardo, co-author of the new research. “We can produce large arrays of independently controlled rotors that use light as the ultimate energy source. These devices could serve one day as cheap and disposable actuators in microrobots for collecting and sorting individual cells inside miniaturized biomedical laboratories.”

This from Phys.org:

[An] important requirement for any bacteria-powered micromotor is the ability to control the micromotor’s motion. To do this, the researchers genetically modified the E. coli strain to express a light-driven proton pump called proteorhodopsin that uses photon energy to pump protons against the electrochemical gradient, which increases the bacteria’s swimming speeds. By illuminating the bacteria-powered micromotors with different light intensities, the researchers could then control the speed of the micromotors.

Read the full article.

Researchers believe this development could find practical applications in medicine, such as drug and cargo delivery.

Related Post

Related Post

DISCLAIMER

All content provided in the ECS Redcat blog is for informational purposes only. The opinions and interests expressed here do not necessarily represent ECS's positions or views. ECS makes no representation or warranties about this blog or the accuracy or reliability of the blog. In addition, a link to an outside blog or website does not mean that ECS endorses that blog or website or has responsibility for its content or use.

Post Comments

Your email address will not be published. Required fields are marked *