Polymer Dielectrics Function at High Temperatures

The new polymer is able to store energy at higher temperatures.Image: Qi Li/Nature

The new polymer is able to store energy at higher temperatures.
Image: Qi Li/Nature

Polymer dielectric materials have many beneficial properties when it comes to energy storage for advanced electronics and power systems. While the materials are highly flexible and have good chemical stability, their main drawback is their limitation of functionality in primarily low working temperatures. In turn, this limits the wider use of polymer dielectric materials for applications such as electric vehicles and underground oil exploration.

However, researchers from Pennsylvania State University have developed a flexible, high-temperature dielectric material from polymer nanocomposites that looks promising for the application of high-temperature electronics.

The researchers, including current ECS member Lei Chen, were able to stabilize dielectric properties by crosslinking polymer nanocomposites that contain boron nitride nanosheets. In testing, the energy density was increased by 400 percent while remaining stable at temperatures as high as 300° C.

With the nanocomposites having huge energy storage capabilities at high temperatures, a much broader application of organic materials in high temperatures electronics and energy storage can be explored.

PS: Interested in polymer research? Make sure to attend the 228th ECS Meeting and get the latest polymer science at our polymers symposia.

Related Post

Related Post

DISCLAIMER

All content provided in the ECS Redcat blog is for informational purposes only. The opinions and interests expressed here do not necessarily represent ECS's positions or views. ECS makes no representation or warranties about this blog or the accuracy or reliability of the blog. In addition, a link to an outside blog or website does not mean that ECS endorses that blog or website or has responsibility for its content or use.

Post Comments

Your email address will not be published. Required fields are marked *