ECS treasurer E.J. Taylor (Founder & CTO of Faraday Technology), recently forwarded us a story from The Economist featuring ECS members and their contributions to research and development on the ever-improving lithium-ion battery.

Since the battery’s commercialization by Sony in the early 1990s, the lithium-ion battery has improved to produce better laptops, smartphones, and even power electric cars.

Vincent Battaglia, ECS member and head of the Electrochemical Technologies Group at Lawrence Berkeley National Laboratory, states that the lithium-ion battery “is almost an ideal battery.” With its light weight and recharging capabilities, the battery has received much attention from researchers globally.

(more…)

The "designer carbon" improved the supercapacitor's electrical conductivity threefold compared to electrodes made of conventional activated carbon.Image: Stanford University

The “designer carbon” improved the supercapacitor’s electrical conductivity threefold compared to electrodes made of conventional activated carbon.
Image: Stanford University

Stanford University researchers have developed a new “designer carbon” that can be fine-tuned for a variety of applications, including energy storage and water filters.

The newly developed carbon material has shown that it can significantly improve the power delivery rate of supercapacitors and boost the performance of energy storage technologies.

“We have developed a ‘designer carbon’ that is both versatile and controllable,” said Zhenan Bao, past member of ECS and the senior author of the study. “Our study shows that this material has exceptional energy-storage capacity, enabling unprecedented performance in lithium-sulfur batteries and supercapacitors.”

(PS: Check out some of Bao’s past papers in the Digital Library!)

Not only is the new carbon an improvement over existing versions, it also has a huge potential scope and is inexpensive to produce.

(more…)

7 New Job Postings in Electrochemistry

Job GraphicECS’s job board keeps you up-to-date with the latest career opportunities in electrochemical and solid state science. Check out the latest openings that have been added to the board.

P.S. Employers can post open positions for free!

Senior Manager, External Technology
Energizer – Westlake, Ohio
Candidate is required to establish agreements and negotiate contracts with technology leaders including companies (public, private and start-up) and universities and national laboratories. Contracts will be vetted internally with line management and legal prior to executing.

Electrochemistry Senior Engineer
Johnson Controls – Milwaukee, WI
The electrochemists uses his/her knowledge and understanding of the chemical and/or electrochemical processes that occur during the conversion of materials in the active masses of a battery, and how these phenomena affect battery performance under different applications, to recommend design or component changes to target performance specifications.

(more…)

The high-performance 3D microbattery is suitable for large-scale on-chip integration.Image: Engineering at Illinois

The high-performance 3D microbattery is suitable for large-scale on-chip integration.
Image: Engineering at Illinois

Engineers from the University of Illinois at Urbana-Champaign’s College of Engineering have developed a high-performance 3D microbattery applicable for large-scale on-chip integration with microelectronic devices.

“This 3D microbattery has exceptional performance and scalability, and we think it will be of importance for many applications,” said Paul Braun, professor of materials science and engineering at Illinois.

“Micro-scale devices typically utilize power supplied off-chip because of difficulties in miniaturizing energy storage technologies. A miniaturized high-energy and high-power on-chip battery would be highly desirable for applications including autonomous microscale actuators, distributed wireless sensors and transmitters, monitors, and portable and implantable medical devices.”

(more…)

We recently sat down with the University of Iowa’s Johna Leddy, an established researcher in electrochemical power sources and a highly respected mentor to the students of the Leddy Lab. Listen as we talk about the energy infrastructure, Dr. Leddy’s career in academia, how to make the world a better place, and more!

Listen below and download this episode and others for free through the iTunes Store, SoundCloud, or our RSS Feed.

(more…)

Engineers developed this one-material battery by sprinkling carbon (red) into each side of a new material (blue) that forms the electrolyte and both electrodes at the ends of the battery.Source: Maryland NanoCenter

Engineers developed this one-material battery by sprinkling carbon (red) into each side of a new material (blue) that forms the electrolyte and both electrodes at the ends of the battery.
Source: Maryland NanoCenter

ECS student member Fudong Han and former member Chunsheng Wang have developed a novel solid state battery comprised of just one material that can both move and store electricity.

This new battery could prove to be revolutionary in the area of solid state batteries due to its incorporation of electrodes and electrolytes into a single material.

“Our battery is 600 microns thick, about the size of a dime, whereas conventional solid state batteries are thin films — forty times thinner. This means that more energy can be stored in our battery,” said Han, the first author of the paper and a graduate student in Wang’s group.

This from the University of Maryland:

The new material consists of a mix of sulfur, germanium, phosphorus and lithium. This compound is used as the ion-moving electrolyte. At each end, the scientists added carbon to this electrolyte to form electrodes that push the ions back and forth through the electrolyte as the battery charges and discharges. Like a little bit more sugar added at each end of a cookie-cream mixture, the carbon merely helps draw the electricity from side to side through the material.

(more…)

Tesla Reveals Battery to Power Homes

Elon Musk has just announced the new Tesla Energy division, which aims to move the energy grid away from dependency on fossil fuels and toward renewables.

The new line features a suite of rechargeable lithium-ion batteries—similar to the batteries used in the Tesla vehicles—for homes, businesses, and utilities. The company states that the battery can store renewable energy at a residential level for load shifting, backup power, and self-consumption of solar power generation.

During his announcement, Musk stated that this move could help change the “entire energy infrastructure of the world.”

The batteries have the ability to charge during non-peak energy usage hours and provide the home with energy during peak usage hours. The batteries are available at 10kWh or 7kWh, with a selling price of $3,500 and $3,000 respectively.

To put this into perspective, an energy comparison firm estimates that 1kWh can produce enough power for a full washing machine cycle.

Tesla hopes that this new line of batteries gets us closer to zero emission power generation and fosters a clean energy ecosystem.

Breaking Dependence on Fossil Fuels

Abruna_Hector_D“You’re not going to solve the energy problem by separating paper and plastic. We need to transition out of our dependency on fossil fuels and into renewables. As a society, it is really up to us to change.”

ECS Fellow Héctor D. Abruña recently spoke on the importance of developing better batteries to change the energy landscape at a Charter Day Weekend lecture at Cornell University.

The energy infrastructure as it exists today cannot maintain in its current form in the years to come. The United Nations expects the world’s population to reach 9.6 billion by 2050. Compare this to the current 7.2 billion population and the current issues with the energy infrastructure and the need for change becomes quite apparent.

Fortunately, Abruña and scientists like him are working to move us toward a more energy efficient and sustainable future through developments in fuel cells and batteries, which will power energy efficient and environmentally safe cars, as well as reshape the energy infrastructure itself.

“If we have any hope of solving the energy problems, we need better energy conversion and storage,” said Abruña.

(more…)

New Development to Improve Energy Storage

Chemical phase map showing how the electrochemical discharge of iron fluoride microwires proceeded from 0 percent discharge (left), to 50 percent (middle), to 95 percent. Source:

Chemical phase map showing how the electrochemical discharge of iron fluoride microwires proceeded from 0 percent discharge (left), to 50 percent (middle), to 95 percent.
Source: AZO Materials

ECS student member Linsen Li, along with former member Song Jin, have recently completed the first part of their study focusing on the powerful potential of iron fluoride in lithium-ion batteries, which can improve energy storage.

“In the past, we weren’t able to truly understand what is happening to iron fluoride during battery reactions because other battery components were getting in the way of getting a precise image,” said Linsen Li, graduate student and research assistant at the University of Wisconsin – Madison.

This development will likely impact energy storage and could, in the future, advance large-scale renewable energy storage technologies if the researchers can maximize the cycling performance and efficiency of the low-cost fluoride lithium-ion battery materials.

(more…)

Ushering in Next-Gen Batteries, Fuel Cells

ECS member

ECS member Shumin Fang was a contributor in a development that could dramatically improve the efficiency of batteries and fuel cells.
Image: Nature Communications

Sometimes the tiniest things could have the biggest impact—especially when it comes to battery technology.

New research from a collaborative team of engineers from Clemson University and the University of South Carolina developed a new material that could boost batteries’ power and help power plants.

ECS student member Shumin Fang of the University of South Carolina was a collaborator on the study. (Take a look at his paper on solid oxide fuel cells.)

The new material acts as a superhighway for ions, allowing for more powerful batteries and boosting the general efficiency of energy conversion.

Because batteries and fuel cells are limited by how fast ions can pass through the electrolyte, engineers must find a mix of electrolyte ingredients that allows for fast movement. This study proposes the answer to this in gadolinium doped ceria.

(more…)