New Options for Grid Energy Storage

Energy storageResearchers from Oregon State university have developed the first battery that uses only hydronium ions as the charge carrier, which the team believes could yield promising results for the future of sustainable energy storage.

Particularly, the researchers are interested in the area of stationary storage. This type of energy storage primarily refers to on-grid storage to harness power from intermittent sources, such as wind or solar, for later use in general distribution. Stationary energy storage is vital for the energy landscape to transition to more renewable types of energy because it will allow the electrical grid to continue to function when the sun goes down and the wind stops blowing.

This from Oregon State University:

Hydronium, also known as H3O+, is a positively charged ion produced when a proton is added to a water molecule. Researchers in the OSU College of Science have demonstrated that hydronium ions can be reversibly stored in an electrode material consisting of perylenetetracarboxylic dianhydridem, or PTCDA.


CellphoneA new paper published in the Journal of The Electrochemical Society, “Mixed Conduction Membranes Suppress the Polysulfide Shuttle in Lithium-Sulfur Batteries,” describes a new battery membrane that makes the cycle life of lithium-sulfur batteries comparable to their lithium-ion counterparts.

The research, led by ECS Fellow Sri Narayan, offers a potential solution to one of the biggest barriers facing next generation batteries: how to create a tiny battery that packs a huge punch.

Narayan and Derek Moy, co-author of the paper, believe that lithium-sulfur batteries could be the answer.

The lithium-sulfur battery has been praised for its high energy storage capacity, but hast struggled in competing with the lithium-ion battery when it comes to cycle life. To put it in perspective, a lithium-sulfur battery can be charged between 50 and 100 times; a lithium-ion battery lasts upwards of 1,200 cycles.

To address this issue, the researchers devised the “Mixed Conduction Membrane” (MCM).


BatteryIn an effort to develop an eco-friendly battery, researchers from Ulsan National Institute of Science and Technology (UNIST) have created a battery that can store and produce electricity by using seawater.

The research is expected to dramatically improve cost and stability issues over the next five years, with researchers confident about commercialization.

The driving force behind the battery is the sodium found in seawater. Because sodium is so abundant, the researchers believe that this new system will be an attractive supplement to existing battery technologies. Because the seawater battery is cheaper and more environmentally friendly than lithium-ion batteries, the team says the seawater battery could provide an alternative option in large-scale energy storage.

This from UNIST:

Seawater batteries are similar to their lithium-ion cousins since they store energy in the same way. The battery extracts sodium ions from the seawater when it is charged with electrical energy and stores them within the cathode compartment. Upon electrochemical discharge, sodium is released from the anode and reacts with water and oxygen from the seawater cathode to form sodium hydroxide. This process provide energy to power, for instance, an electric vehicle.


By: Jackie Flynn, Stanford University

UreaA battery made with urea, commonly found in fertilizers and mammal urine, could provide a low-cost way of storing energy produced through solar power or other forms of renewable energy for consumption during off hours.

Developed by Stanford chemistry Professor Hongjie Dai and doctoral candidate Michael Angell, the battery is nonflammable and contains electrodes made from abundant aluminum and graphite. Its electrolyte’s main ingredient, urea, is already industrially produced by the ton for plant fertilizers.

“So essentially, what you have is a battery made with some of the cheapest and most abundant materials you can find on Earth. And it actually has good performance,” said Dai. “Who would have thought you could take graphite, aluminum, urea, and actually make a battery that can cycle for a pretty long time?”

In 2015, Dai’s lab was the first to make a rechargeable aluminum battery. This system charged in less than a minute and lasted thousands of charge-discharge cycles. The lab collaborated with Taiwan’s Industrial Technology Research Institute (ITRI) to power a motorbike with this older version, earning Dai’s group and ITRI a 2016 R&D 100 Award. However, that version of the battery had one major drawback: it involved an expensive electrolyte.

The newest version includes a urea-based electrolyte and is about 100 times cheaper than the 2015 model, with higher efficiency and a charging time of 45 minutes. It’s the first time urea has been used in a battery. According to Dai, the cost difference between the two batteries is “like night and day.” The team recently reported its work in the Proceedings of the National Academy of Sciences.


BatteryMost of today’s batteries are made up of two solid layers, separated by a liquid or gel electrolyte. But some researchers are beginning to move away from that traditional battery in favor of an all-solid-state battery, which some researchers believe could enhance battery energy density and safety. While there are many barriers to overcome when pursing a feasible all-solid-state battery, researchers from MIT believe they are headed in the right direction.

This from MIT:

For the first time, a team at MIT has probed the mechanical properties of a sulfide-based solid electrolyte material, to determine its mechanical performance when incorporated into batteries.

Read the full article.

“Batteries with components that are all solid are attractive options for performance and safety, but several challenges remain,” says Van Vliet, co-author of the paper. “[Today’s batteries are very efficient, but] the liquid electrolytes tend to be chemically unstable, and can even be flammable. So if the electrolyte was solid, it could be safer, as well as smaller and lighter.”


LI-SM3ECS is sponsoring the Lithium Sulfur Batteries: Mechanisms, Modelling and Materials (Li-SM3) 2017 Conference, taking place April 26-27 in London.

This year marks the second Li-SM3 conference, which will bring together top academics, scientists, and engineers from around the world to discuss lithium sulfur rechargeable batteries, among other related topics.

The conference will include four keynote speakers, including ECS member Ratnakumar Bugga, who will deliver a talk entitled “High Energy Density Lithium-Sulfur Batteries for NASA and DoD Applications.” Learn more about the speakers in the conference agenda.

There’s still time to submit a poster abstract. Deadline for posters is March 3.

Register for Li-SM3 today!

The Search for a Super Battery

From electric vehicles to grid storage for renewables, batteries are key components in many of tomorrow’s innovations. But current commercialized batteries face problems of price, efficiency, safety, and life-cycle. The television series, NOVA, is exploring many of those issues in the upcoming episode, “Search for the Super Battery.”

A preview of the episode by CBS News explores two innovators who are working toward the next big thing in battery technology.


Battery fires led to the recall of nearly 2 million Samsung Galaxy Note 7 smartphones. In order to address this safety concern, researchers at Stanford University have identified 21 solid electrolytes for solid state batteries that could power the next-generation of electronics.

“Electrolytes shuttle lithium ions back and forth between the battery’s positive and negative electrodes,” says lead author of the study Austin Sendek, a doctoral candidate at Stanford University, who worked with ECS member Yi Cui on this research. “Liquid electrolytes are cheap and conduct ions really well, but they can catch fire if the battery overheats or is short-circuited by puncturing.”

As demands from the electronics industry grow and consumers become more suspicious of lithium-ion technology, researchers have started focusing efforts on creating an all-solid-state battery.

“The main advantage of solid electrolytes is stability,” Sendek says. “Solids are far less likely to blow up or vaporize than organic solvents. They’re also much more rigid and would make the battery structurally stronger.”

There’s a major player in the autonomous, electric car industry that may just outpace transportation mogul Tesla. Faraday Future, an American start-up focused on developing intelligent electric vehicles, just unveiled its first self-driving supercar called the FF91.

Faraday Future states that the vehicle’s 130 kWh battery delivers a range of 378 miles on a single charge. Additionally, 10 cameras, 13 radar sensors, and 12 ultrasonic sensors help power the vehicle’s autonomous abilities.

But Nick Samson, Faraday Future’s senior vice president of engineering, says that the FF91 is “more than just a car,” rather an “intelligent entity.”

In addition to the batter and self-driving tech, the FF91 boasts an infotainment system that allows passengers to watch TV based on your preferences, which are known by the car due to an online profile.

Battery Research for Higher Voltages

BatteryLithium-ion batteries supply billions of portable devices with energy. While current Li-ion battery designs may be sufficient for applications such as smartphones and tablets, the rise of electric vehicles and power storage systems demands new battery technology with new electrode materials and electrolytes.

ECS student member Michael Metzger is looking to address that issue by developing a new battery test cell that can investigate anionic and cationic reactions separately.

Along with Benjamin Strehle, Sophie Slochenbach, and ECS Fellow Hubert A. Gasteiger, Metzger and company published their new findings in the Journal of The Elechemical Society in two open access papers.

(READ: “Origin of H2 Evolution in LIBs: H2O Reduction vs. Electrolyte Oxidation” and “Hydrolysis of Ethylene Carbonate with Water and Hydroxide under Battery Operating Conditions“)

“Manufacturers of rechargeable batteries are building on the proven lithium-ion technology, which has been deployed in mobile devices like laptops and cell phones for many years,” says Metzger, the 2016 recipient of ECS’s Herbert H. Uhlig Summer Fellowship. “However, the challenge of adapting this technology to the demands of electromobility and stationary electric power storage is not trivial.”